ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)

Overview

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)
(Accepted by ICCV'21)

image

Abstract:

Snow is a highly complicated atmospheric phenomenon that usually contains snowflake, snow streak, and veiling effect (similar to the haze or the mist). In this literature, we propose a single image desnowing algorithm to address the diversity of snow particles in shape and size. First, to better represent the complex snow shape, we apply the dual-tree wavelet transform and propose a complex wavelet loss in the network. Second, we propose a hierarchical decomposition paradigm in our network for better understanding the different sizes of snow particles. Last, we propose a novel feature called the contradict channel (CC) for the snow scenes. We find that the regions containing the snow particles tend to have higher intensity in the CC than that in the snow-free regions. We leverage this discriminative feature to construct the contradict channel loss for improving the performance of snow removal. Moreover, due to the limitation of existing snow datasets, to simulate the snow scenarios comprehensively, we propose a large-scale dataset called Comprehensive Snow Dataset (CSD). Experimental results show that the proposed method can favorably outperform existing methods in three synthetic datasets and real-world datasets.

[Paper Download] [Dataset Download] [Poster Download] [Slide Download]

You can also refer our previous works on other low-level vision applications!

Desnowing-[JSTASR](ECCV'20)
Dehazing-[PMS-Net](CVPR'19) and [PMHLD](TIP'20)
Image Relighting-[MB-Net] (NTIRE'21 1st solution) and [S3Net] (NTIRE'21 3 rd solution)

Network Architecture

image

Dataset

We also propose a large scale dataset called Comprehensive Snow Dataset (CSD). It can present the snow scenes in more comprehensive way. You can leverage this dataset to train your network.
[Dataset Download] image

Setup and environment

To generate the recovered result you need:

  1. Python 3
  2. CPU or NVIDIA GPU + CUDA CuDNN
  3. tensorflow 1.15.0
  4. keras 2.3.0
  5. dtcwt 0.12.0

Training

python ./train.py --logPath ./your_log_path --dataPath /path_to_data/data.npy --gtPath /path_to_gt/gt.npy --batchsize batchsize --epochs epochs --modelPath ./path_to_exist_model/model_to_load.h5 --validation_num number_of_validation_image --steps_per_epoch steps_per_epoch

*data.npy should be numpy of training image whose shape is (number_of_image, 480, 640, 3). The range is (0, 255) and the datatype is uint8 or int.
*gt.npy should be numpy of ground truth image, whose shape is (number_of_image, 480, 640, 3). The range is (0, 255) and datatype is uint8 or int.

Example:

python ./train.py --logPath ./log --dataPath ./training_data.npy --gtPath ./training_gt.npy --batchsize 3 --epochs 1500 --modelPath ./previous_log/preivious_model.h5 --validation_num 200 --steps_per_epoch 80

Testing

$ python ./predict.py -dataroot ./your_dataroot -datatype datatype -predictpath ./output_path -batch_size batchsize

*datatype default: tif, jpg ,png

Examples

$ 
python ./predict.py -dataroot ./testImg -predictpath ./p -batch_size 3
python ./predict.py -dataroot ./testImg -datatype tif -predictpath ./p -batch_size 3

The pre-trained model can be downloaded from: https://ntucc365-my.sharepoint.com/:u:/g/personal/f05943089_ntu_edu_tw/EZtus9ex-GtNukLuSxWGmPIBEJIzRFMbEl0dFeZ_oTQnVQ?e=xnfqFL. Put the "finalmodel.h5" to the 'modelParam'.

Citations

Please cite this paper in your publications if it is helpful for your tasks:

Bibtex:

@inproceedings{chen2021all,
  title={ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-Tree Complex Wavelet Representation and Contradict Channel Loss},
  author={Chen, Wei-Ting and Fang, Hao-Yu and Hsieh, Cheng-Lin and Tsai, Cheng-Che and Chen, I and Ding, Jian-Jiun and Kuo, Sy-Yen and others},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={4196--4205},
  year={2021}
}
Owner
Wei-Ting Chen
Wei-Ting Chen
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Jan 02, 2023
MQBench Quantization Aware Training with PyTorch

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recur

Jie Lei 雷杰 151 Jan 06, 2023
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

TransFusion-Pose TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei

Haoyu Ma 29 Dec 23, 2022
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz 206 Jan 04, 2023
Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
Count GitHub Stars ⭐

Count GitHub Stars per Day ⭐ Track GitHub stars per day over a date range to measure the open-source popularity of different repositories. Requirement

Ultralytics 20 Nov 20, 2022
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
Multiple custom object count and detection using YOLOv3-Tiny method

Electronic-Component-YOLOv3 Introduce This project created to detect, count, and recognize multiple custom object using YOLOv3-Tiny method. The target

Derwin Mahardika 2 Nov 14, 2022
ArcaneGAN by Alex Spirin

ArcaneGAN by Alex Spirin

Alex 617 Dec 28, 2022
NVIDIA Deep Learning Examples for Tensor Cores

NVIDIA Deep Learning Examples for Tensor Cores Introduction This repository provides State-of-the-Art Deep Learning examples that are easy to train an

NVIDIA Corporation 10k Dec 31, 2022