SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

Overview

SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

A novel graph neural network (GNN) based model (termed SlideGraph+) to predict HER2 status directly from whole-slide images of routine Haematoxylin and Eosin (H&E) slides. This pipeline generates node-level and WSI-level predictions by using a graph representation to capture the biological geometric structure of the cellular architecture at the entire WSI level. A pre-processing function is used to do adaptive spatial agglomerative clustering to group spatially neighbouring regions with high degree of feature similarity and construct a WSI-level graph based on clusters.

Data

The repository can be used for constructing WSI-level graphs, training SlideGraph and predicting HER2 status on WSI-level graphs. The training data used in this study was downloaded from TCGA using https://portal.gdc.cancer.gov/projects/TCGA-BRCA.

Workflow of predicting HER2 status from H&E images

workflow1

GNN network architecture

GCN_architecture5

Environment

Please refer to requirements.txt

Repository Structure

Below are the main executable scripts in the repository:

features_to_graph.py: Construct WSI-level graph

platt.py: Normalise classifier output scores to a probability value

GNN_pr.py: Graph neural network architecture

train.py: Main training and inference script

Training the classification model

Data format

For training, each WSI has to have a WSI-level graph. In order to do that, it is required to generate x,y coordinates, feature vectors for local regions in the WSIs. x,y coordinates can be cental points of patches, centroid of nuclei and so on. Feature varies. It can be nuclear composition features (e.g.,counts of different types of nuclei in the patch), morphological features, receptor expression features, deep features (or neuralfeature embdeddings from a pre-trained neural network) and so on.

Each WSI should be fitted with one npz file which contains three arrays: x_coordinate, y_coordinate and corresponding region-level feature vector. Please refer to feature.npz in the example folder.

Graph construction

After npz files are ready, run features_to_graph.py to group spatially neighbouring regions with high degree of feature similarity and construct a graph based on clusters for each WSI.

  • Set path to the feature directories (feature_path)
  • Set path where graphs will be saved (output_path)
  • Modify hyperparameters, including similarity parameters (lambda_d, lambda_f), hierachical clustering distance threshold (lamda_h) and node connection distance threshold (distance_thres)

Training

After getting graphs of all WSIs,

  • Set path to the graph directories (bdir) in train.py
  • Set path to the clinical data (clin_path) in train.py
  • Modify hyperparameters, including learning_rate, weight_decay in train.py

Train the classification model and do 5-fold stratified cross validation using

python train.py

In each fold, top 10 best models (on validation dataset) and the model from the last epoch are tested on the testing dataset. Averaged classification performance among 5 folds are presented in the end.

Heatmap of node-level prediction scores

heatmap_final

Heatmaps of node-level prediction scores and zoomed-in regions which have different levels of HER2 prediction score. Boundary colour of each zoomed-in region represents its contribution to HER2 positivity (prediction score).

License

The source code SlideGraph as hosted on GitHub is released under the GNU General Public License (Version 3).

The full text of the licence is included in LICENSE.md.

A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks.

The Lottery Ticket Hypothesis for Pre-trained BERT Networks Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks. [NeurIPS

VITA 122 Dec 14, 2022
RLHive: a framework designed to facilitate research in reinforcement learning.

RLHive is a framework designed to facilitate research in reinforcement learning. It provides the components necessary to run a full RL experiment, for both single agent and multi agent environments.

88 Jan 05, 2023
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

LEYA 13 Nov 30, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

TUCH This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright License fo

Lea Müller 45 Jan 07, 2023
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
Gesture-controlled Video Game. Just swing your finger and play the game without touching your PC

Gesture Controlled Video Game Detailed Blog : https://www.analyticsvidhya.com/blog/2021/06/gesture-controlled-video-game/ Introduction This project is

Devbrat Anuragi 35 Jan 06, 2023
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
Auto White-Balance Correction for Mixed-Illuminant Scenes

Auto White-Balance Correction for Mixed-Illuminant Scenes Mahmoud Afifi, Marcus A. Brubaker, and Michael S. Brown York University Video Reference code

Mahmoud Afifi 47 Nov 26, 2022
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
NVIDIA Deep Learning Examples for Tensor Cores

NVIDIA Deep Learning Examples for Tensor Cores Introduction This repository provides State-of-the-Art Deep Learning examples that are easy to train an

NVIDIA Corporation 10k Dec 31, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance"

Lidar-Segementation An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance" from

Wangxu1996 135 Jan 06, 2023
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
An offline deep reinforcement learning library

d3rlpy: An offline deep reinforcement learning library d3rlpy is an offline deep reinforcement learning library for practitioners and researchers. imp

Takuma Seno 817 Jan 02, 2023
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.0

Saman Khamesian 6 Dec 13, 2022