Lumped-element impedance calculator and frequency-domain plotter.

Related tags

Text Data & NLPfastZ
Overview

fastZ: Lumped-Element Impedance Calculator

fastZ is a small tool for calculating and visualizing electrical impedance in Python. Features include:

  • Support for lumped-parameter resistors, capacitors, and inductors.
  • Construction of series and parallel impedance networks with the + and // operators.
  • Element labels with subscript assignment using the subscript operator [].
  • Impedance calculation at a single frequency or over a numpy array using the call operator ().
  • Frequency-domain Bode magnitude plots with curve annotation.

You can also compute circuit transfer functions represented as the ratio of two impedance networks. See the PID compensator in the Examples section for more information.

from fastz import R, L, C
from fastz.plotting import bodez
import numpy as np

Zin = ( L(v=22e-6) + ( C(v=100e-6) // R(v=2.0) )['p'] )['in']
fig, ax = bodez(Zin, ff=np.logspace(2, 5, 1000), zlines='Zin Zp', refzlines='R L C')

png

Installation

Install the fastZ package with pip:

pip install fastz

Dependencies: numpy and matplotlib

Usage

Constructing Impedance Models

Many impedance networks can be represented by series and parallel combinations of RLC elements. The fastZ package provides the classes R, L, and C along with the series and parallel operators + and // for this purpose. For example, a resistor R1 with a value of 50Ω is constructed as:

R1 = R('1', 50)
str(R1)
'R1[50Ω]'

The first argument to the constructor is the resistor's subscript. It gets appended to the the resistor's prefix 'R' to form the label 'R1'. The second argument is the resistor's value in Ohms. Both the subscript and value are optional, but keep the following rules in mind:

  • If you omit the subscript, you must pass the value using the keyword argument v.
  • If you omit the value, you must later provide it when evaulating or plotting the impedance (more about this below).

The LC constructors are similar, except that L accepts a value in Henreies (H) and C in Farads (F).

The addition operator + constructs series impedance networks. For example, we can build a series RC network using:

Zs = R(v=10.0) + C(v=1e-6)
str(Zs)
'(R[10.0Ω] + C[1e-06F])'

Similarly, the floor division operator // constructs parallel impedance networks. For example, a parallel RL network is constructed as:

Zp = R(v=100) // L(v=22e-6)
str(Zp)
'(R[100Ω] || L[2.2e-05H])'

Create more complex impedance networks by combining the series and parallel operators in hierarchy:

Zc = (R('1') + C('1')) // (R('2') + L('2') + C('2')) + L('3') // C('3')
str(Zc)
'(((R1 + C1) || (R2 + L2 + C2)) + (L3 || C3))'

Evalulating Impedance Models

Call an impedance with a single frequency or numpy array of frequencies using the call operator () to evalulate the impedance at those frequencies. For example, suppose we have the impedance:

Z = L(v=22e-6) + C(v=100e-6) // R(v=2.0)

You can evalulate its value at a frequency of 4kHz using:

Z(3e3)
(0.1314731604517404-0.0809519077494511j)

Or evalulate the impedance over multiple frequencies using:

Z(np.array([1, 1e3, 100e3]))
array([1.99999684e+00-2.37504008e-03j, 7.75453273e-01-8.36233246e-01j,
       1.26643460e-04+1.38070932e+01j])

If you omitted element values when constructing an impedance network, or want to temporarily overwrite the values of some elements, you'll need to pass the element values as keyword arguments to the call operator:

Z(3e3, L=100e-6, R=100.0)
(0.0028143981128015963+1.3544540460266075j)

Plotting Impedance Models

The bodez function provided within the plotting module draws the Bode magnitude plot of an impedance given a numpy array of the frequencies at which to evaulate the impedance. Use the optional string argument zlines to specify the whitespace-separated labels of additional sub-impedances to draw on the plot. The optional string argument refzlines specifies the labels of sub-impedances to plot in the reference-line style (dashed gray by default.) To change the horizontal postion of an impedances curve's annotation, append a colon followed by the horizontal location in frequency units. For example:

Z = (R(v=1) // L(v=100e-6) // C(v=200e-6))['p'] + L('2', 10e-6)
fig, ax = bodez(Z, ff=np.logspace(2, 5, 1000), zlines='Z:30000 Zp:10000', refzlines='R:4000 L:100e3 C L2')

png

If you omitted element values when constructing an impedance network, or want to temporarily overwrite the values of some elements, you'll need to pass the element values as keyword arguments as well:

fig, ax = bodez(Z, ff=np.logspace(2, 5, 1000), zlines='Zp', refzlines='R L C L2', R=10, C=50e-6)

png

Using Subscripts

Subscripts are string or integer suffix values that help identify resistors, inductors, capacitors, and composite impedances. To assign a subscript to an RLC element, pass it to the constructor:

La = L('a', 1e-6)
str(La)
'La[1e-06H]'

You can assign a subscript to a composite impedance using the subscript operator []:

Zin = (R(v=1.0) + La)['in']
str(Zin)
'Zin:(R[1.0Ω] + La[1e-06H])'

Bode plot annotations reflect the appropriate subscripts:

fig, ax = bodez(Zin, ff=np.logspace(4, 7, 1000), refzlines='R La')

png

Accessing Sub-Impedances

We might build an impedance network consisting of multiple labeled subportions. For example:

Z1 = (C('1') + L('1'))['a'] // (R('2') + L('2'))['b'] // C('3')
str(Z1)
'(Za:(C1 + L1) || Zb:(R2 + L2) || C3)'

Sometimes it may be useful to access the sub-impedances Za and Zb, or the individual RLC elements. Use the subz method to do so:

Za = Z1.subz('Za')
str(Za)
'Za:(C1 + L1)'
C1 = Z1.subz('C1')
str(C1)
'C1'

Internally, the bodez plotting function relies on the subz method to plot additional impedances specified in the zlines and refzlines arguments

Computing Break Frequencies

The breakfreq method computes RC, RL, and LC break frequencies. A break frequency is the frequency at which one element's impedance magnitude equals the other element's impedance magnitude. Suppose we have the following parallel RLC network:

Z1 = R(v=1) // L(v=100e-6) // C(v=22e-6)
str(Z1)
'(R[1Ω] || L[0.0001H] || C[2.2e-05F])'

The following draws vertical lines at the RC, RL, and LC break frequencies:

fig, ax = bodez(Z1, ff=np.logspace(2.5, 4.5, 1000), refzlines='R L:2200 C:5000')
for fb in [Z1.breakfreq('R L'), Z1.breakfreq('L C'), Z1.breakfreq('R C')]:
    ax.axvline(x=fb, ls=':', color='red')

ax.set_ylim((0.1, 3))
(0.1, 3)

png

Examples

SMPS Output Impedance

Here's a model of the small-signal output impedance of a Buck, Boost, or Buck-Boost converter (switching-mode power supplies):

SMPS output impedance

Le is the effective output inductance of the converter, C is the output capacitor, and Rload represents the load. To make things a bit more interesting, we've included the inductor's ohmic loss as RL and the capacitor's equivalent series inductance and resistance as Lesl and Resr, respectively. We construct and evaluate a fastZ model with some sample component values below:

from fastz import R, L, C
from fastz.plotting import bodez
import numpy as np
import matplotlib.pyplot as plt

Zout = ( R('load', 10) // (L('esl', 1e-6) + C(v=100e-6) + R('esr', 1))['cap'] // (L('e', 44e-6) + R('L', 3.0))['ind'] )['out']
bodez(Zout, ff=np.logspace(1, 7, 1000), 
      zlines='Zout:10e3 Zcap:10e3 Zind:10e3', 
      refzlines='Rload C:300 Lesl:120e3 Resr Le:7e3 RL')
plt.ylim((0.6, 12))
plt.show()

png

PID Compensator

This op amp circuit could appear in a feedback control loop as a PID (lead-lag) compensator:

PID compensator

VREF represents the setpoint of the feedback system (assumed constant in this case), vfb is the feedback voltage signal, and vc is the compensated output voltage signal. The transfer relationship is

Vc(s) = Gc(s)·Ve(s)

where ve = VREF - vfb is the error signal and Gc(s) = Z1(s)/Z2(s) is the compensator's transfer function. We can use fastZ to compute Gc since it is the ratio of two lumped-element impedance networks.

from fastz import R, L, C
from fastz.plotting import bodez
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import EngFormatter

# construct models of Z1 and Z2
Z1 = ( R('1', 30e3) + C('1', 20e-9) )['1']
Z2 = ( R('2', 10e3) // C('2', 5e-9) + R('3', 2e3) )['2']

# evalulate frequency response of Gc
ff = np.logspace(1, 6, 1000)
GGc = Z1(ff) / Z2(ff)

# plot the results
fig, (axm, axp) = plt.subplots(2, 1, figsize=(6, 8))
axz = axm.twinx()

bodez(Z1, ff, ax=axz, zlines='Z1:1e3', refzlines='R1 C1:5e3')
bodez(Z2, ff, ax=axz, zlines='Z2:1e3', refzlines='R2:800e3 R3 C2:200')
axm.loglog(ff, np.abs(GGc), color='purple')
axp.semilogx(ff, np.angle(GGc)*180/np.pi, color='purple')
axm.annotate('$|G_c|$', (ff[-1], abs(GGc[-1])), 
             ha='center', va='center', backgroundcolor='w')
axp.annotate('$\\angle G_c$', (ff[-10], np.angle(GGc[-10])*180/np.pi), 
             ha='center', va='center', backgroundcolor='w')

axm.xaxis.set_major_formatter(EngFormatter())
axp.xaxis.set_major_formatter(EngFormatter())
axm.set_ylabel('Compensator Gain (V/V)')
axp.set_ylabel('Compensator Phase Shift (°)')
axp.set_xlabel('Frequency (Hz)')
axm.set_ylim((1, 110))
axz.set_ylim((1e3, 1e6))
plt.show()

png

You can see that there's a phase boost of about 40° at 10kHz. An inverted zero appears at about 300Hz to boost the low-frequency gain.

Contributing

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Wesley Hileman - [email protected]

Owner
Wesley Hileman
Wesley Hileman
A versatile token stream for handwritten parsers.

Writing recursive-descent parsers by hand can be quite elegant but it's often a bit more verbose than expected, especially when it comes to handling indentation and reporting proper syntax errors. Th

Valentin Berlier 8 Nov 30, 2022
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.

State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 🤗 Transformers provides thousands of pretrained models to perform tasks o

Hugging Face 77.3k Jan 03, 2023
Stack based programming language that compiles to x86_64 assembly or can alternatively be interpreted in Python

lang lang is a simple stack based programming language written in Python. It can

Christoffer Aakre 1 May 30, 2022
Local cross-platform machine translation GUI, based on CTranslate2

DesktopTranslator Local cross-platform machine translation GUI, based on CTranslate2 Download Windows Installer You can either download a ready-made W

Yasmin Moslem 29 Jan 05, 2023
Tracking Progress in Natural Language Processing

Repository to track the progress in Natural Language Processing (NLP), including the datasets and the current state-of-the-art for the most common NLP tasks.

Sebastian Ruder 21.2k Dec 30, 2022
Subtitle Workshop (subshop): tools to download and synchronize subtitles

SUBSHOP Tools to download, remove ads, and synchronize subtitles. SUBSHOP Purpose Limitations Required Web Credentials Installation, Configuration, an

Joe D 4 Feb 13, 2022
Code for producing Japanese GPT-2 provided by rinna Co., Ltd.

japanese-gpt2 This repository provides the code for training Japanese GPT-2 models. This code has been used for producing japanese-gpt2-medium release

rinna Co.,Ltd. 491 Jan 07, 2023
keras implement of transformers for humans

keras implement of transformers for humans

苏剑林(Jianlin Su) 4.8k Jan 03, 2023
Ask for weather information like a human

weather-nlp About Ask for weather information like a human. Goals Understand typical questions like: Hourly temperatures in Potsdam on 2020-09-15. Rai

5 Oct 29, 2022
NeMo: a toolkit for conversational AI

NVIDIA NeMo Introduction NeMo is a toolkit for creating Conversational AI applications. NeMo product page. Introductory video. The toolkit comes with

NVIDIA Corporation 5.3k Jan 04, 2023
Skipgram Negative Sampling in PyTorch

PyTorch SGNS Word2Vec's SkipGramNegativeSampling in Python. Yet another but quite general negative sampling loss implemented in PyTorch. It can be use

Jamie J. Seol 287 Dec 14, 2022
A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. X-Ray supports 18 languages.

WordDumb A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. Languages X-Ray supp

172 Dec 29, 2022
Code for EMNLP20 paper: "ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training"

ProphetNet-X This repo provides the code for reproducing the experiments in ProphetNet. In the paper, we propose a new pre-trained language model call

Microsoft 394 Dec 17, 2022
A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

GuwenModels: 古文自然语言处理模型合集, 收录互联网上的古文相关模型及资源. A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

Ethan 66 Dec 26, 2022
A telegram bot to translate 100+ Languages

🔥 GOOGLE TRANSLATER 🔥 The owner would not be responsible for any kind of bans due to the bot. • ⚡ INSTALLING ⚡ • • 🔰 Deploy To Railway 🔰 • • ✅ OFF

Aɴᴋɪᴛ Kᴜᴍᴀʀ 5 Dec 20, 2021
MEDIALpy: MEDIcal Abbreviations Lookup in Python

A small python package that allows the user to look up common medical abbreviations.

Aberystwyth Systems Biology 7 Nov 09, 2022
Shared code for training sentence embeddings with Flax / JAX

flax-sentence-embeddings This repository will be used to share code for the Flax / JAX community event to train sentence embeddings on 1B+ training pa

Nils Reimers 23 Dec 30, 2022
Optimal Transport Tools (OTT), A toolbox for all things Wasserstein.

Optimal Transport Tools (OTT), A toolbox for all things Wasserstein. See full documentation for detailed info on the toolbox. The goal of OTT is to pr

OTT-JAX 255 Dec 26, 2022
Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch

COCO LM Pretraining (wip) Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch. They were a

Phil Wang 44 Jul 28, 2022