EOD Historical Data Python Library (Unofficial)

Overview

EOD Historical Data Python Library (Unofficial)

https://eodhistoricaldata.com

Installation

python3 -m pip install eodhistoricaldata

Note

Demo API key below is provided by EOD Historial Data for testing purposes https://eodhistoricaldata.com/financial-apis/new-real-time-data-api-websockets

Usage

None: """Main""" websocket = WebSocketClient( # Demo API key for testing purposes api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="crypto", symbols=["BTC-USD"] #api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="forex", symbols=["EURUSD"] #api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="us", symbols=["AAPL"] ) websocket.start() message_count = 0 while True: if websocket: if ( message_count != websocket.message_count ): print(websocket.message) message_count = websocket.message_count sleep(0.25) # output every 1/4 second, websocket is realtime if __name__ == "__main__": main() ">
"""Sample script"""

from time import sleep
from eodhistoricaldata import WebSocketClient

def main() -> None:
    """Main"""

    websocket = WebSocketClient(
        # Demo API key for testing purposes
        api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="crypto", symbols=["BTC-USD"]
        #api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="forex", symbols=["EURUSD"]
        #api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="us", symbols=["AAPL"]
    )
    websocket.start()

    message_count = 0
    while True:
        if websocket:
            if (
                message_count != websocket.message_count
            ):
                print(websocket.message)
                message_count = websocket.message_count
                sleep(0.25)  # output every 1/4 second, websocket is realtime

if __name__ == "__main__":
    main()
You might also like...
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data

tedana: TE Dependent ANAlysis TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI)

Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data.
Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data.

Hatchet Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data. It is intended for analyzing

 🧪 Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.
🧪 Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.

🧪📈 🐍. The purpose of the panel-chemistry project is to make it really easy for you to do DATA ANALYSIS and build powerful DATA AND VIZ APPLICATIONS within the domain of Chemistry using using Python and HoloViz Panel.

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code. Tuplex has similar Python APIs to Apache Spark or Dask, but rather than invoking the Python interpreter, Tuplex generates optimized LLVM bytecode for the given pipeline and input data set.

Python data processing, analysis, visualization, and data operations

Python This is a Python data processing, analysis, visualization and data operations of the source code warehouse, book ISBN: 9787115527592 Descriptio

Catalogue data - A Python Scripts to prepare catalogue data

catalogue_data Scripts to prepare catalogue data. Setup Clone this repo. Install

fds is a tool for Data Scientists made by DAGsHub to version control data and code at once.
fds is a tool for Data Scientists made by DAGsHub to version control data and code at once.

Fast Data Science, AKA fds, is a CLI for Data Scientists to version control data and code at once, by conveniently wrapping git and dvc

A data parser for the internal syncing data format used by Fog of World.
A data parser for the internal syncing data format used by Fog of World.

A data parser for the internal syncing data format used by Fog of World. The parser is not designed to be a well-coded library with good performance, it is more like a demo for showing the data structure.

Functional Data Analysis, or FDA, is the field of Statistics that analyses data that depend on a continuous parameter.
Comments
  • Syntax issue with query Parameter in get_calendar_ functions

    Syntax issue with query Parameter in get_calendar_ functions

    Hello,

    When using the get_calendar_XXX, functions we cannot use the query parameters defined by EOD as the word "from" is forbidden by Python, for instance : earning=client.get_calendar_earnings(from='2022-11-01', to='2022-11-30')

    will raise an issue.

    Should I pass the argument differently ?

    opened by ATCBGroup 1
  • dependency on matplotlib but it is not installed with pip

    dependency on matplotlib but it is not installed with pip

    dependency on matplotlib but it is not installed with pip

    [email protected]:~/git/traderai/eod$ cat test.py
    from eodhd import APIClient
    api = APIClient("DEMO")
    
    [email protected]:~/git/traderai/eod$ python3 test.py
    Traceback (most recent call last):
      File "/home/mshamber/.local/lib/python3.8/site-packages/eodhd/eodhdgraphs.py", line 5, in <module>
        import matplotlib.pyplot as plt
    ModuleNotFoundError: No module named 'matplotlib'
    
    [email protected]:~/git/traderai/eod$ python3 -m pip install eodhd
    Requirement already satisfied: eodhd in /home/mshamber/.local/lib/python3.8/site-packages (1.0.8)
    Requirement already satisfied: websocket-client==1.3.3 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (1.3.3)
    Requirement already satisfied: rich==12.5.1 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (12.5.1)
    Requirement already satisfied: websockets==10.3 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (10.3)
    Requirement already satisfied: numpy==1.21.6 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (1.21.6)
    Requirement already satisfied: pandas==1.3.5 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (1.3.5)
    Requirement already satisfied: requests==2.28.1 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (2.28.1)
    Requirement already satisfied: commonmark<0.10.0,>=0.9.0 in /home/mshamber/.local/lib/python3.8/site-packages (from rich==12.5.1->eodhd) (0.9.1)
    Requirement already satisfied: typing-extensions<5.0,>=4.0.0; python_version < "3.9" in /home/mshamber/.local/lib/python3.8/site-packages (from rich==12.5.1->eodhd) (4.3.0)
    Requirement already satisfied: pygments<3.0.0,>=2.6.0 in /home/mshamber/.local/lib/python3.8/site-packages (from rich==12.5.1->eodhd) (2.13.0)
    Requirement already satisfied: python-dateutil>=2.7.3 in /home/mshamber/.local/lib/python3.8/site-packages (from pandas==1.3.5->eodhd) (2.8.2)
    Requirement already satisfied: pytz>=2017.3 in /home/mshamber/.local/lib/python3.8/site-packages (from pandas==1.3.5->eodhd) (2022.5)
    Requirement already satisfied: charset-normalizer<3,>=2 in /home/mshamber/.local/lib/python3.8/site-packages (from requests==2.28.1->eodhd) (2.1.1)
    Requirement already satisfied: idna<4,>=2.5 in /usr/lib/python3/dist-packages (from requests==2.28.1->eodhd) (2.8)
    Requirement already satisfied: certifi>=2017.4.17 in /usr/lib/python3/dist-packages (from requests==2.28.1->eodhd) (2019.11.28)
    Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/lib/python3/dist-packages (from requests==2.28.1->eodhd) (1.25.8)
    Requirement already satisfied: six>=1.5 in /home/mshamber/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas==1.3.5->eodhd) (1.16.0)
    
    opened by opme 1
Releases(1.0.8)
Owner
Michael Whittle
Solution Architect
Michael Whittle
Time ranges with python

timeranges Time ranges. Read the Docs Installation pip timeranges is available on pip: pip install timeranges GitHub You can also install the latest v

Micael Jarniac 2 Sep 01, 2022
Retentioneering 581 Jan 07, 2023
Toolchest provides APIs for scientific and bioinformatic data analysis.

Toolchest Python Client Toolchest provides APIs for scientific and bioinformatic data analysis. It allows you to abstract away the costliness of runni

Toolchest 11 Jun 30, 2022
A distributed block-based data storage and compute engine

Nebula is an extremely-fast end-to-end interactive big data analytics solution. Nebula is designed as a high-performance columnar data storage and tabular OLAP engine.

Columns AI 131 Dec 26, 2022
MeSH2Matrix - A set of Python codes for the generation of biomedical ontologies from the MeSH keywords of the PubMed scholarly publications

A set of Python codes for the generation of biomedical ontologies from the MeSH keywords of the PubMed scholarly publications

SisonkeBiotik 6 Nov 30, 2022
A probabilistic programming library for Bayesian deep learning, generative models, based on Tensorflow

ZhuSuan is a Python probabilistic programming library for Bayesian deep learning, which conjoins the complimentary advantages of Bayesian methods and

Tsinghua Machine Learning Group 2.2k Dec 28, 2022
Scraping and analysis of leetcode-compensations page.

Leetcode compensations report Scraping and analysis of leetcode-compensations page.

utsav 96 Jan 01, 2023
Detailed analysis on fraud claims in insurance companies, gives you information as to why huge loss take place in insurance companies

Insurance-Fraud-Claims Detailed analysis on fraud claims in insurance companies, gives you information as to why huge loss take place in insurance com

1 Jan 27, 2022
NFCDS Workshop Beginners Guide Bioinformatics Data Analysis

Genomics Workshop FIXME: overview of workshop Code of Conduct All participants s

Elizabeth Brooks 2 Jun 13, 2022
Intake is a lightweight package for finding, investigating, loading and disseminating data.

Intake: A general interface for loading data Intake is a lightweight set of tools for loading and sharing data in data science projects. Intake helps

Intake 851 Jan 01, 2023
PrimaryBid - Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift

Transform application Lifecycle Data and Design and ETL pipeline architecture for ingesting data from multiple sources to redshift This project is composed of two parts: Part1 and Part2

Emmanuel Boateng Sifah 1 Jan 19, 2022
Projects that implement various aspects of Data Engineering.

DATAWAREHOUSE ON AWS The purpose of this project is to build a datawarehouse to accomodate data of active user activity for music streaming applicatio

2 Oct 14, 2021
Additional tools for particle accelerator data analysis and machine information

PyLHC Tools This package is a collection of useful scripts and tools for the Optics Measurements and Corrections group (OMC) at CERN. Documentation Au

PyLHC 3 Apr 13, 2022
A collection of learning outcomes data analysis using Python and SQL, from DQLab.

Data Analyst with PYTHON Data Analyst berperan dalam menghasilkan analisa data serta mempresentasikan insight untuk membantu proses pengambilan keputu

6 Oct 11, 2022
BigDL - Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems

Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems.

Vo Cong Thanh 1 Jan 06, 2022
PySpark bindings for H3, a hierarchical hexagonal geospatial indexing system

h3-pyspark: Uber's H3 Hexagonal Hierarchical Geospatial Indexing System in PySpark PySpark bindings for the H3 core library. For available functions,

Kevin Schaich 12 Dec 24, 2022
Python Package for DataHerb: create, search, and load datasets.

The Python Package for DataHerb A DataHerb Core Service to Create and Load Datasets.

DataHerb 4 Feb 11, 2022
This creates a ohlc timeseries from downloaded CSV files from NSE India website and makes a SQLite database for your research.

NSE-timeseries-form-CSV-file-creator-and-SQL-appender- This creates a ohlc timeseries from downloaded CSV files from National Stock Exchange India (NS

PILLAI, Amal 1 Oct 02, 2022
PipeChain is a utility library for creating functional pipelines.

PipeChain Motivation PipeChain is a utility library for creating functional pipelines. Let's start with a motivating example. We have a list of Austra

Michael Milton 2 Aug 07, 2022
nrgpy is the Python package for processing NRG Data Files

nrgpy nrgpy is the Python package for processing NRG Data Files Website and source: https://github.com/nrgpy/nrgpy Documentation: https://nrgpy.github

NRG Tech Services 23 Dec 08, 2022