Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

Overview

MobileViT

RegNet

Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TRANSFORMER.


Table of Contents


Model Architecture

Trulli

MobileViT Architecture

Usage

Training

python main.py
optional arguments:
  -h, --help            show this help message and exit
  --gpu_device GPU_DEVICE
                        Select specific GPU to run the model
  --batch-size N        Input batch size for training (default: 64)
  --epochs N            Number of epochs to train (default: 20)
  --num-class N         Number of classes to classify (default: 10)
  --lr LR               Learning rate (default: 0.01)
  --weight-decay WD     Weight decay (default: 1e-5)
  --model-path PATH     Path to save the model

Citation

@InProceedings{Sachin2021,
  title = {MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TRANSFORMER},
  author = {Sachin Mehta and Mohammad Rastegari},
  booktitle = {},
  year = {2021}
}

If this implement have any problem please let me know, thank you.

Comments
  • Training settings

    Training settings

    I really appreciate your efforts in implementing this model in pytorch. Here, I have one concern about the training settings. If what I understand is correct, you just trained the model for less than 5 epoches.

    In addition, the hyper-parameters you adopted is different from that in the original article. For instance, in the original manuscript, authors train mobilevit using AdamW optimizer, label smoothing cross-entry and multi-scale sampler. The training phase has a warmup stage.

    I also found that the classificaion accuracy provided here is much lower than that in the original version.

    I conjecture that the gab between accuracies are caused by different training settings.

    opened by hkzhang91 6
  • load pretrain weight failed

    load pretrain weight failed

    import torch
    import models
    
    model = models.MobileViT_S()
    PATH = "./MobileVit-S.pth.tar"
    weights = torch.load(PATH, map_location=lambda storage, loc: storage)
    model.load_state_dict(weights['state_dict'])
    model.eval()
    torch.save(model, './model.pt')
    
    • I try to load the pre-train weight to test one demo; but the network structure does not seem to match the weights, is there any solution?

    image

    opened by hererookie 2
  • model training hyperparameter

    model training hyperparameter

    A problem has been bothering me. the learning rate, optimizer, batch_size, L2 regularization, label smoothing and epochs are inconsistent with the paper. How should I modify the code?

    opened by Agino-ltp 1
  • Have you test MobileVit on cifar-10?

    Have you test MobileVit on cifar-10?

    Thanks for your wonderful work!

    I prepare to try MobileVit on small dataset, such as MNIST, and I need adjust the network structure. Before this work, I want to know if MobileVit has a better performance than other networks on small dataset.

    I notice "get_cifar10_dataset" in utils.py. Have you tested MobileVit on cifar-10? If you have, could you please show me the accuracy and inference time result?

    opened by Jerryme-xxm 1
  • Issues when loading MobileViT_S()

    Issues when loading MobileViT_S()

    I wanted to load the MobileViT_S() model and use the pre-trained weights, but I have got some errors in my code. To make it easier and help others, I will share my solution (in case there will be someone who is beginner like me):

    def load_mobilevit_weights(model_path):
      # Create an instance of the MobileViT model
      net = MobileViT_S()
      
      # Load the PyTorch state_dict
      state_dict = torch.load(model_path, map_location=torch.device('cpu'))['state_dict']
      
      # Since there is a problem in the names of layers, we will change the keys to meet the MobileViT model architecture
      for key in list(state_dict.keys()):
        state_dict[key.replace('module.', '')] = state_dict.pop(key)
      
      # Once the keys are fixed, we can modify the parameters of MobileViT
      net.load_state_dict(state_dict)
      
      return net
    
    net = load_mobilevit_weights("MobileViT_S_model_best.pth.tar")
    
    opened by Sehaba95 4
Releases(weight)
Owner
Hong-Jia Chen
Master student at National Chung Cheng University, Taiwan. Interested in Deep Learning and Computer Vision.
Hong-Jia Chen
Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch]

Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch] Abstract Snapshot compressive imaging (SCI) can rec

integirty 6 Nov 01, 2022
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022
A curated list of awesome projects and resources related fastai

A curated list of awesome projects and resources related fastai

Tanishq Abraham 138 Dec 22, 2022
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
A particular navigation route using satellite feed and can help in toll operations & traffic managemen

How about adding some info that can quanitfy the stress on a particular navigation route using satellite feed and can help in toll operations & traffic management The current analysis is on the satel

Ashish Pandey 1 Feb 14, 2022
Near-Duplicate Video Retrieval with Deep Metric Learning

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

2 Jan 24, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from

2 May 09, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Densely Connected Convolutional Networks, In CVPR 2017 (Best Paper Award).

Densely Connected Convolutional Networks (DenseNets) This repository contains the code for DenseNet introduced in the following paper Densely Connecte

Zhuang Liu 4.5k Jan 03, 2023
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Collie do

ShopRunner 96 Dec 29, 2022
MoCap-Solver: A Neural Solver for Optical Motion Capture Data

MoCap-Solver is a data-driven-based robust marker denoising method, which takes raw mocap markers as input and outputs corresponding clean markers and skeleton motions.

55 Dec 28, 2022
Annotate with anyone, anywhere.

h h is the web app that serves most of the https://hypothes.is/ website, including the web annotations API at https://hypothes.is/api/. The Hypothesis

Hypothesis 2.6k Jan 08, 2023
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision

A Light in the Dark: Deep Learning Practices for Industrial Computer Vision This is the repository for our Paper/Contribution to the WI2022 in Nürnber

Maximilian Harl 6 Jan 17, 2022
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm

Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neu

Filip Molcik 38 Dec 17, 2022
dyld_shared_cache processing / Single-Image loading for BinaryNinja

Dyld Shared Cache Parser Author: cynder (kat) Dyld Shared Cache Support for BinaryNinja Without any of the fuss of requiring manually loading several

cynder 76 Dec 28, 2022
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We

haguettaz 12 Dec 10, 2022