MobileViT
RegNet
Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TRANSFORMER.
Table of Contents
Model Architecture MobileViT Architecture
Usage
Training
python main.py
optional arguments:
-h, --help show this help message and exit
--gpu_device GPU_DEVICE
Select specific GPU to run the model
--batch-size N Input batch size for training (default: 64)
--epochs N Number of epochs to train (default: 20)
--num-class N Number of classes to classify (default: 10)
--lr LR Learning rate (default: 0.01)
--weight-decay WD Weight decay (default: 1e-5)
--model-path PATH Path to save the model
Citation
@InProceedings{Sachin2021,
title = {MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TRANSFORMER},
author = {Sachin Mehta and Mohammad Rastegari},
booktitle = {},
year = {2021}
}