DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

Related tags

Deep LearningDropNAS
Overview

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS, a grouped operation dropout method for one-level DARTS, with better and more stable performance.

Requirements

  • python-3.5.2
  • pytorch-1.0.0
  • torchvision-0.2.0
  • tensorboardX-2.0
  • graphviz-0.14

How to use the code

  • Search
# with the default setting presented in paper, but you may need to adjust the batch size to prevent OOM 
python3 search.py --name cifar10_example --dataset CIFAR10 --gpus 0
  • Augment
# use the genotype we found on CIFAR10

python3 augment.py --name cifar10_example --dataset CIFAR10 --gpus 0 --genotype "Genotype(
    normal=[[('sep_conv_3x3', 1), ('skip_connect', 0)], [('sep_conv_3x3', 1), ('sep_conv_3x3', 0)], [('sep_conv_3x3', 1), ('sep_conv_3x3', 0)], [('dil_conv_5x5', 4), ('dil_conv_3x3', 1)]],
    normal_concat=range(2, 6),
    reduce=[[('max_pool_3x3', 0), ('sep_conv_5x5', 1)], [('dil_conv_5x5', 2), ('sep_conv_5x5', 1)], [('dil_conv_5x5', 3), ('dil_conv_5x5', 2)], [('dil_conv_5x5', 3), ('dil_conv_5x5', 4)]],
    reduce_concat=range(2, 6)
)"

Results

The following results in CIFAR-10/100 are obtained with the default setting. More results with different arguements and other dataset like ImageNet can be found in the paper.

Dataset Avg Acc (%) Best Acc (%)
CIFAR-10 97.42±0.14 97.74
CIFAR-100 83.05±0.41 83.61

The performance of DropNAS and one-level DARTS across different search spaces on CIFAR-10/100.

Dataset Search Space DropNAS Acc (%) one-level DARTS Acc (%)
CIFAR-10 3-skip 97.32±0.10 96.81±0.18
1-skip 97.33±0.11 97.15±0.12
original 97.42±0.14 97.10±0.16
CIFAR-100 3-skip 83.03±0.35 82.00±0.34
1-skip 83.53±0.19 82.27±0.25
original 83.05±0.41 82.73±0.36

The test error of DropNAS on CIFAR-10 when different operation groups are applied with different drop path rates.

r_p=1e-5 r_p=3e-5 r_p=1e-4
r_np=1e-5 97.40±0.16 97.28±0.04 97.36±0.12
r_np=3e-5 97.36±0.11 97.42±0.14 97.31±0.05
r_np=1e-4 97.35±0.07 97.31±0.10 97.37±0.16

Found Architectures

cifar10-normal cifar10-reduce
CIFAR-10

cifar100-normal cifar100-reduce
CIFAR100

Reference

[1] https://github.com/quark0/darts (official implementation of DARTS)

[2] https://github.com/khanrc/pt.darts

[3] https://github.com/susan0199/StacNAS (feature map code used in our paper)

Owner
weijunhong
weijunhong
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Wonjong Jang 8 Nov 01, 2022
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
Learning the Beauty in Songs: Neural Singing Voice Beautifier; ACL 2022 (Main conference); Official code

Learning the Beauty in Songs: Neural Singing Voice Beautifier Jinglin Liu, Chengxi Li, Yi Ren, Zhiying Zhu, Zhou Zhao Zhejiang University ACL 2022 Mai

Jinglin Liu 257 Dec 30, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
(ICCV 2021) ProHMR - Probabilistic Modeling for Human Mesh Recovery

ProHMR - Probabilistic Modeling for Human Mesh Recovery Code repository for the paper: Probabilistic Modeling for Human Mesh Recovery Nikos Kolotouros

Nikos Kolotouros 209 Dec 13, 2022
Shape-Adaptive Selection and Measurement for Oriented Object Detection

Source Code of AAAI22-2171 Introduction The source code includes training and inference procedures for the proposed method of the paper submitted to t

houliping 24 Nov 29, 2022
Аналитика доходности инвестиционного портфеля в Тинькофф брокере

Аналитика доходности инвестиционного портфеля Тиньков Видео на YouTube Для работы скрипта нужно установить три переменных окружения: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022
Swapping face using Face Mesh with TensorFlow Lite

Swapping face using Face Mesh with TensorFlow Lite

iwatake 17 Apr 26, 2022
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
A module for solving and visualizing Schrödinger equation.

qmsolve This is an attempt at making a solid, easy to use solver, capable of solving and visualize the Schrödinger equation for multiple particles, an

506 Dec 28, 2022
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between

Deng-Ping Fan 32 Oct 10, 2022
Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

DSIG Deep Structured Instance Graph for Distilling Object Detectors Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia. [pdf] [slide]

DV Lab 31 Nov 17, 2022
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022
Code repository for Semantic Terrain Classification for Off-Road Autonomous Driving

BEVNet Datasets Datasets should be put inside data/. For example, data/semantic_kitti_4class_100x100. Training BEVNet-S Example: cd experiments bash t

(Brian) JoonHo Lee 24 Dec 12, 2022