VideoGPT: Video Generation using VQ-VAE and Transformers

Related tags

Deep LearningVideoGPT
Overview

VideoGPT: Video Generation using VQ-VAE and Transformers

[Paper][Website][Colab][Gradio Demo]

We present VideoGPT: a conceptually simple architecture for scaling likelihood based generative modeling to natural videos. VideoGPT uses VQ-VAE that learns downsampled discrete latent representations of a raw video by employing 3D convolutions and axial self-attention. A simple GPT-like architecture is then used to autoregressively model the discrete latents using spatio-temporal position encodings. Despite the simplicity in formulation and ease of training, our architecture is able to generate samples competitive with state-of-the-art GAN models for video generation on the BAIR Robot dataset, and generate high fidelity natural images from UCF-101 and Tumbler GIF Dataset (TGIF). We hope our proposed architecture serves as a reproducible reference for a minimalistic implementation of transformer based video generation models.

Approach

VideoGPT

Installation

Change the cudatoolkit version compatible to your machine.

$ conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=11.0
$ pip install git+https://github.com/wilson1yan/VideoGPT.git

Sparse Attention (Optional)

For limited compute scenarios, it may be beneficial to use sparse attention.

$ sudo apt-get install llvm-9-dev
$ DS_BUILD_SPARSE_ATTN=1 pip install deepspeed

After installng deepspeed, you can train a sparse transformer by setting the flag --attn_type sparse in scripts/train_videogpt.py. The default support sparsity configuration is an N-d strided sparsity layout, however, you can write your own arbitrary layouts to use.

Dataset

The default code accepts data as an HDF5 file with the specified format in videogpt/data.py, and a directory format with the follow structure:

video_dataset/
    train/
        class_0/
            video1.mp4
            video2.mp4
            ...
        class_1/
            video1.mp4
            ...
        ...
        class_n/
            ...
    test/
        class_0/
            video1.mp4
            video2.mp4
            ...
        class_1/
            video1.mp4
            ...
        ...
        class_n/
            ...

An example of such a dataset can be constructed from UCF-101 data by running the script

sh scripts/preprocess/create_ucf_dataset.sh datasets/ucf101

You may need to install unrar and unzip for the code to work correctly.

If you do not care about classes, the class folders are not necessary and the dataset file structure can be collapsed into train and test directories of just videos.

Using Pretrained VQ-VAEs

There are four available pre-trained VQ-VAE models. All strides listed with each model are downsampling amounts across THW for the encoders.

  • bair_stride4x2x2: trained on 16 frame 64 x 64 videos from the BAIR Robot Pushing dataset
  • ucf101_stride4x4x4: trained on 16 frame 128 x 128 videos from UCF-101
  • kinetics_stride4x4x4: trained on 16 frame 128 x 128 videos from Kinetics-600
  • kinetics_stride2x4x4: trained on 16 frame 128 x 128 videos from Kinetics-600, with 2x larger temporal latent codes (achieves slightly better reconstruction)
from torchvision.io import read_video
from videogpt import load_vqvae
from videogpt.data import preprocess

video_filename = 'path/to/video_file.mp4'
sequence_length = 16
resolution = 128
device = torch.device('cuda')

vqvae = load_vqvae('kinetics_stride2x4x4')
video = read_video(video_filename, pts_unit='sec')[0]
video = preprocess(video, resolution, sequence_length).unsqueeze(0).to(device)

encodings = vqvae.encode(video)
video_recon = vqvae.decode(encodings)

Training VQ-VAE

Use the scripts/train_vqvae.py script to train a VQ-VAE. Execute python scripts/train_vqvae.py -h for information on all available training settings. A subset of more relevant settings are listed below, along with default values.

VQ-VAE Specific Settings

  • --embedding_dim: number of dimensions for codebooks embeddings
  • --n_codes 2048: number of codes in the codebook
  • --n_hiddens 240: number of hidden features in the residual blocks
  • --n_res_layers 4: number of residual blocks
  • --downsample 4 4 4: T H W downsampling stride of the encoder

Training Settings

  • --gpus 2: number of gpus for distributed training
  • --sync_batchnorm: uses SyncBatchNorm instead of BatchNorm3d when using > 1 gpu
  • --gradient_clip_val 1: gradient clipping threshold for training
  • --batch_size 16: batch size per gpu
  • --num_workers 8: number of workers for each DataLoader

Dataset Settings

  • --data_path : path to an hdf5 file or a folder containing train and test folders with subdirectories of videos
  • --resolution 128: spatial resolution to train on
  • --sequence_length 16: temporal resolution, or video clip length

Training VideoGPT

You can download a pretrained VQ-VAE, or train your own. Afterwards, use the scripts/train_videogpt.py script to train an VideoGPT model for sampling. Execute python scripts/train_videogpt.py -h for information on all available training settings. A subset of more relevant settings are listed below, along with default values.

VideoGPT Specific Settings

  • --vqvae kinetics_stride4x4x4: path to a vqvae checkpoint file, OR a pretrained model name to download. Available pretrained models are: bair_stride4x2x2, ucf101_stride4x4x4, kinetics_stride4x4x4, kinetics_stride2x4x4. BAIR was trained on 64 x 64 videos, and the rest on 128 x 128 videos
  • --n_cond_frames 0: number of frames to condition on. 0 represents a non-frame conditioned model
  • --class_cond: trains a class conditional model if activated
  • --hidden_dim 576: number of transformer hidden features
  • --heads 4: number of heads for multihead attention
  • --layers 8: number of transformer layers
  • --dropout 0.2': dropout probability applied to features after attention and positionwise feedforward layers
  • --attn_type full: full or sparse attention. Refer to the Installation section for install sparse attention
  • --attn_dropout 0.3: dropout probability applied to the attention weight matrix

Training Settings

  • --gpus 2: number of gpus for distributed training
  • --sync_batchnorm: uses SyncBatchNorm instead of BatchNorm3d when using > 1 gpu
  • --gradient_clip_val 1: gradient clipping threshold for training
  • --batch_size 16: batch size per gpu
  • --num_workers 8: number of workers for each DataLoader

Dataset Settings

  • --data_path : path to an hdf5 file or a folder containing train and test folders with subdirectories of videos
  • --resolution 128: spatial resolution to train on
  • --sequence_length 16: temporal resolution, or video clip length

Sampling VideoGPT

After training, the VideoGPT model can be sampled using the scripts/sample_videogpt.py. You may need to install ffmpeg: sudo apt-get install ffmpeg

Reproducing Paper Results

Note that this repo is primarily designed for simplicity and extending off of our method. Reproducing the full paper results can be done using code found at a separate repo. However, be aware that the code is not as clean.

Citation

Please consider using the follow citation when using our code:

@misc{yan2021videogpt,
      title={VideoGPT: Video Generation using VQ-VAE and Transformers}, 
      author={Wilson Yan and Yunzhi Zhang and Pieter Abbeel and Aravind Srinivas},
      year={2021},
      eprint={2104.10157},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Wilson Yan
1st year PhD interested in unsupervised learning and reinforcement learning
Wilson Yan
Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021)

Substrate_Mediated_Invasion Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021) 2DSolver.jl reproduces the simulat

Matthew Simpson 0 Nov 09, 2021
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

Object DGCNN & DETR3D This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110

Wang, Yue 539 Jan 07, 2023
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Cheng Zhang 149 Jan 08, 2023
MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Introduction MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identif

Matrix Profile Foundation 79 Dec 31, 2022
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f

49 Dec 21, 2022
Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques

Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques This repository is derived from the NMTGMinor

Tu Anh Dinh 1 Sep 07, 2022
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
Streamlit app demonstrating an image browser for the Udacity self-driving-car dataset with realtime object detection using YOLO.

Streamlit Demo: The Udacity Self-driving Car Image Browser This project demonstrates the Udacity self-driving-car dataset and YOLO object detection in

Streamlit 992 Jan 04, 2023
PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”

A new codebase for popular Scene Graph Generation methods (2020). Visualization & Scene Graph Extraction on custom images/datasets are provided. It's also a PyTorch implementation of paper “Unbiased

Kaihua Tang 824 Jan 03, 2023
Pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion"

MOSNet pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion" https://arxiv.org/abs/1904.08352 Dependency L

9 Nov 18, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
An official TensorFlow implementation of “CLCC: Contrastive Learning for Color Constancy” accepted at CVPR 2021.

CLCC: Contrastive Learning for Color Constancy (CVPR 2021) Yi-Chen Lo*, Chia-Che Chang*, Hsuan-Chao Chiu, Yu-Hao Huang, Chia-Ping Chen, Yu-Lin Chang,

Yi-Chen (Howard) Lo 58 Dec 17, 2022
Quantum-enhanced transformer neural network

Example of a Quantum-enhanced transformer neural network Get the code: git clone https://github.com/rdisipio/qtransformer.git cd qtransformer Create

Riccardo Di Sipio 61 Nov 08, 2022
Game Agent Framework. Helping you create AIs / Bots that learn to play any game you own!

Serpent.AI - Game Agent Framework (Python) Update: Revival (May 2020) Development work has resumed on the framework with the aim of bringing it into 2

Serpent.AI 6.4k Jan 05, 2023