Hierarchical Uniform Manifold Approximation and Projection

Overview

pypi_version pypi_downloads

HUMAP exploration on Fashion MNIST dataset

HUMAP

Hierarchical Manifold Approximation and Projection (HUMAP) is a technique based on UMAP for hierarchical non-linear dimensionality reduction. HUMAP allows to:

  1. Focus on important information while reducing the visual burden when exploring whole datasets;
  2. Drill-down the hierarchy according to information demand.

The details of the algorithm can be found in our paper on ArXiv.

Installation

HUMAP was written in C++ for performance purposes, and it has an intuitive Python interface. It depends upon common machine learning libraries, such as scikit-learn and NumPy. It also needs the pybind11 due to the interface between C++ and Python.

Requirements:

  • Python 3.6 or greater
  • numpy
  • scipy
  • scikit-learn
  • pybind11
  • Eigen (C++)

If you have these requirements installed, use PyPI:

pip install humap

For Windows users:

The Eigen library does not have to be installed. Just add the files to C:Eigen or use the manual installation to change Eigen location.

Manual installation:

For manually installing HUMAP, download the project and proceed as follows:

python setup.py bdist_wheel
pip install dist/humap*.whl

Usage examples

HUMAP package follows the same idea of sklearn classes, in which you need to fit and transform data.

Fitting the hierarchy

import humap
from sklearn.datasets import fetch_openml


X, y = fetch_openml('mnist_784', version=1, return_X_y=True)

hUmap = humap.HUMAP()
hUmap.fit(X, y)

HUMAP embedding of top-level MNIST digits

By now, you can control six parameters related to the hierarchy construction and the embedding performed by UMAP.

  • levels: Controls the number of hierarchical levels + the first one (whole dataset). This parameter also controls how many data points are in each hierarchical level. The default is [0.2, 0.2], meaning the HUMAP will produce three levels: The first one with the whole dataset, the second one with 20% of the first level, and the third with 20% of the second level.
  • n_neighbors: This parameter controls the number of neighbors for approximating the manifold structures. Larger values produce embedding that preserves more of the global relations. In HUMAP, we recommend and set the default value to be 100.
  • min_dist: This parameter, used in UMAP dimensionality reduction, controls the allowance to cluster data points together. According to UMAP documentation, larger values allow evenly distributed embeddings, while smaller values encode the local structures better. We set this parameter as 0.15 as default.
  • knn_algorithm: Controls which knn approximation will be used, in which NNDescent is the default. Another option is ANNOY or FLANN if you have Python installations of these algorithms at the expense of slower run-time executions than NNDescent.
  • init: Controls the method for initing the low-dimensional representation. We set Spectral as default since it yields better global structure preservation. You can also use random initialization.
  • verbose: Controls the verbosity of the algorithm.

Embedding a hierarchical level

After fitting the dataset, you can generate the embedding for a hierarchical level by specifying the level.

embedding_l2 = hUmap.transform(2)
y_l2 = hUmap.labels(2)

Notice that the .labels() method only works for levels equal or greater than one.

Drilling down the hierarchy by embedding a subset of data points based on indices

Embedding data subsets throughout HUMAP hierarchy

When interested in a set of data samples, HUMAP allows for drilling down the hierarchy for those samples.

embedding, y, indices = hUmap.transform(2, indices=indices_of_interest)

This method returns the embedding coordinates, the labels (y), and the data points' indices in the current level. Notice that the current level is now level 1 since we used the hierarchy level 2 for drilling down operation.

Drilling down the hierarchy by embedding a subset of data points based on labels

You can apply the same concept as above to embed data points based on labels.

embedding, y, indices = hUmap.transform(2, indices=np.array([4, 9]), class_based=True)

C++ UMAP implementation

You can also fit a one-level HUMAP hierarchy, which essentially corresponds to a UMAP projection.

umap_reducer = humap.HUMAP(np.array([]))
umap_reducer.fit(X, y)

embedding = umap_reducer.transform(0)

Citation

Please, use the following reference to cite HUMAP in your work:

@misc{marciliojr_humap2021,
  title={HUMAP: Hierarchical Uniform Manifold Approximation and Projection},
  author={Wilson E. Marcílio-Jr and Danilo M. Eler and Fernando V. Paulovich and Rafael M. Martins},
  year={2021},
  eprint={2106.07718},
  archivePrefix={arXiv},
  primaryClass={cs.LG}
    }

License

HUMAP follows the 3-clause BSD license and it uses the open-source NNDescent implementation from EFANNA. It also uses a C++ implementation of UMAP for embedding hierarchy levels; this project would not be possible without UMAP's fantastic technique and package.

E-mail me (wilson_jr at outlook.com) if you like to contribute.


You might also like...
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Curved Projection Reformation
Curved Projection Reformation

Description Assuming that we already know the image of the centerline, we want the lumen to be displayed on a plane, which requires curved projection

Implementation of
Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

my graduation project is about live human face augmentation by projection mapping by using CNN
my graduation project is about live human face augmentation by projection mapping by using CNN

Live-human-face-expression-augmentation-by-projection my graduation project is about live human face augmentation by projection mapping by using CNN o

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.
Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.

LearningPatches | Webpage | Paper | Video Learning Manifold Patch-Based Representations of Man-Made Shapes Dmitriy Smirnov, Mikhail Bessmeltsev, Justi

A Pytorch implementation of
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Manifold-SCA Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning The repo is org

Comments
  • [Packaging] Requesting conda-forge package

    [Packaging] Requesting conda-forge package

    Hi,

    Just putting it out there that you might want to consider putting up your package on conda-forge. Many other packages like numpy, scikit-learn, umap, are all available on conda-forge, and managing them through conda cli makes it easy to be up-to-date and not worry about dependencies like MKL, which pip doesn't handle well.

    As a bonus, I see that this package depends on Eigen, which needs to be manually configured on Windows. Conda-forge already has eigen available, which might make this much less error-prone for Windows users, which I assume will be a substantial chunk.

    Just as an FYI, here is a link for conda-forge submission process.

    Thanks!

    opened by stallam-unb 6
  • RuntimeError: Some rows contain fewer than n_neighbors distances

    RuntimeError: Some rows contain fewer than n_neighbors distances

    Problems when computing hierarchy for small datasets. I tried to execute HUMAP on Iris dataset using 100, 15, and 10 n_neighbors.

    RuntimeError: Some rows contain fewer than n_neighbors distances

    opened by wilsonjr 1
  • Transform with new data?

    Transform with new data?

    Semi-related to #4 , but my case is that I want to use HUMAP on a supervised data where I have a training data with labels, and I want to be able to project new test data with the same embeddings. UMAP supports this use case, I was wondering if this would be theoretically possible with HUMAP as well? Would be nice to be able to use HUMAP to interpret classifier decisions.

    opened by stallam-unb 0
  • Semi-supervised learning?

    Semi-supervised learning?

    Thanks for writing this awesome library, only recently discovered it. Do you have plans to support semi-supervised umap? From my first try outs of your library, this is the fastest (h)umap implementation which has nndescent. I would like to use it for semi-supervised learning, too.

    enhancement 
    opened by KnutJaegersberg 6
Releases(v0.2.1)
Owner
Wilson Estécio Marcílio Júnior
PhD Candidate in Computer Science. Interested in ML and Explainability.
Wilson Estécio Marcílio Júnior
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Phil Wang 383 Jan 02, 2023
SelfAugment extends MoCo to include automatic unsupervised augmentation selection.

SelfAugment extends MoCo to include automatic unsupervised augmentation selection. In addition, we've included the ability to pretrain on several new datasets and included a wandb integration.

Colorado Reed 24 Oct 26, 2022
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback This is our Pytorch implementation for the paper: Yinwei Wei,

17 Jun 10, 2022
Immortal tracker

Immortal_tracker Prerequisite Our code is tested for Python 3.6. To install required liabraries: pip install -r requirements.txt Waymo Open Dataset P

74 Dec 03, 2022
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

1k Dec 28, 2022
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 188 Dec 29, 2022
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
A hyperparameter optimization framework

Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software

7.4k Jan 04, 2023
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
Doing the asl sign language classification on static images using graph neural networks.

SignLangGNN When GNNs 💜 MediaPipe. This is a starter project where I tried to implement some traditional image classification problem i.e. the ASL si

10 Nov 09, 2022