PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."

Overview

Conditioning Sparse Variational Gaussian Processes for Online Decision-making

This repository contains a PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."

Introduction

Online variational conditioning (OVC) provides closed form conditioning (e.g. updating a model's posterior predictive distribution after having observed new data points) for stochastic variational Gaussian processes. OVC enables the development of ``fantasization" (predicting on data and then conditioning on a random posterior sample) for variational GPs, thereby enabling SVGPs to be used for the first time in advanced, look-ahead acquisitions such as the batch knowledge gradient, entropy search, and look-ahead Thompson sampling (which we introduce).

In this repo, we provide an implementation of a SVGP model with OVC hooked up as the get_fantasy_model function, allowing it to be natively used with any advanced acquisition function in BoTorch (see the experiments in the experiments/std_bayesopt folder).

Installation

python setup.py develop

See requirements.txt for our setup. We require Pytorch >= 1.8.0 and used the master versions of GPyTorch and BoTorch installed from source.

File Structure

.
+-- volatilitygp/
|   +-- likelihoods/
|   |   +-- _one_dimensional_likelihood.py (Implementation of Newton iteration and the base class for the others)
|   |   +-- bernoulli_likelihood.py
|   |   +-- binomial_likelihood.py
|   |   +-- fixed_noise_gaussian_likelihood.py
|   |   +-- multivariate_normal_likelihood.py
|   |   +-- poisson_likelihood.py
|   |   +-- volatility_likelihood.py
|   +-- mlls/
|   |   +-- patched_variational_elbo.py (patched version of elbo to allow sumMLL training)
|   +-- models/
|   |   +-- model_list_gp.py (patched version of ModelListGP to allow for SVGP models)
|   |   +-- single_task_variational_gp.py (Our basic model class for SVGPs)
|   +-- utils/
|   |   +-- pivoted_cholesky.py (our pivoted cholesky implementation for inducing point init)
+-- experiments/
|   +-- active_learning/ (malaria experiment)
|   |   +-- qnIPV_experiment.py (main script)
|   +-- highd_bo/ (rover experiments)
|   |   +-- run_trbo.py (turbo script)
|   |   +-- run_gibbon.py (global model script, Fig 10c)
|   |   +-- rover_conditioning_experiment.ipynb (Fig 10b)
|   |   +-- trbo.py (turbo implementation)
|   +-- hotspots/ (schistomiasis experiment)
|   |   +-- hotspots.py (main script)
|   +-- mujoco/ (mujoco experiments on swimmer and hopper)
|   |   +-- functions/ (mujoco functions)
|   |   +-- lamcts/ (LA-MCTS implementation)
|   |   +-- turbo_1/ (TurBO implementation)
|   |   run.py (main script)
|   +-- pref_learning/ (preference learning experiment)
|   |   +-- run_pref_learning_exp.py (main script)
|   +-- std_bayesopt/ (bayes opt experiments)
|   |   +-- hartmann6.py (constrained hartmann6)
|   |   +-- lcls_optimization.py (laser)
|   |   +-- poisson_hartmann6.py (poisson constrained hartmann6)
|   |   +-- utils.py (model definition helpers)
|   |   +-- weighted_gp_benchmark/ (python 3 version of WOGP)
|   |   |   +-- lcls_opt_script.py (main script)
+-- tests/ (assorted unit tests for the volatilitygp package)

Commands

Please see each experiment folder for the larger scale experiments.

The understanding experiments can be found in:

  • Figure 1a-b: notebooks/svgp_fantasization_plotting.ipynb
  • Figure 1c: notebooks/SABR_vol_plotting.ipynb
  • Figure 2b-d: experiments/std_bayesopt/knowledge_gradient_branin_plotting.ipynb
  • Figure 6: notebooks/ssgp_port.ipynb
  • Figure 7: notebooks/ssgp_time_series_testing_pivcholesky.ipynb
  • Figure 8: notebooks/streaming_bananas_plots.ipynb
  • Figure 10b: experiments/highd_bo/rover_conditioning_experiment.ipynb

Code Credits and References

  • BoTorch (https://botorch.org). Throughout, many examples were inspired by assorted BoTorch tutorials, while we directly compare to Botorch single task GPs.
  • GPyTorch (https://gpytorch.ai). Our implementation of SVGPs rests on this implementation.
  • LA-MCTS code comes from here
  • laser WOGP code comes from here
  • hotspots data comes from here
  • malaria active learning script comes from here. Data can be downloaded from here.
Owner
Wesley Maddox
PhD student at New York University.
Wesley Maddox
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Münster 57 Nov 12, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation(DANN), support Office-31 and Office-Home dataset

DANN A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation Prerequisites Linux or OSX NVIDIA GPU + CUDA (may CuDNN) and corre

8 Apr 16, 2022
This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637

This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637 Dependencies The model depends on the foll

Jörg Encke 2 Oct 14, 2022
DeepVoxels is an object-specific, persistent 3D feature embedding.

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of

Vincent Sitzmann 196 Dec 25, 2022
Code for the paper "Improved Techniques for Training GANs"

Status: Archive (code is provided as-is, no updates expected) improved-gan code for the paper "Improved Techniques for Training GANs" MNIST, SVHN, CIF

OpenAI 2.2k Jan 01, 2023
Share a benchmark that can easily apply reinforcement learning in Job-shop-scheduling

Gymjsp Gymjsp is an open source Python library, which uses the OpenAI Gym interface for easily instantiating and interacting with RL environments, and

134 Dec 08, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Introduction MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identif

Matrix Profile Foundation 79 Dec 31, 2022
CS_Final_Metal_surface_detection - This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021.

CS_Final_Metal_surface_detection This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021. The project is based on the dataset

Cuong Vo 1 Dec 29, 2021
This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022

CPC_DeepCluster This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEEC

LEAP Lab 2 Sep 15, 2022
A Simple Long-Tailed Rocognition Baseline via Vision-Language Model

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

Teli Ma 4 Jan 20, 2022
Simultaneous NMT/MMT framework in PyTorch

This repository includes the codes, the experiment configurations and the scripts to prepare/download data for the Simultaneous Machine Translation wi

<a href=[email protected]"> 37 Sep 29, 2022
Does Pretraining for Summarization Reuqire Knowledge Transfer?

Pretraining summarization models using a corpus of nonsense

Approximately Correct Machine Intelligence (ACMI) Lab 12 Dec 19, 2022
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023
Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

JR ROBOTICS 4 Aug 16, 2021
Jingju baseline - A baseline model of our project of Beijing opera script generation

Jingju Baseline It is a baseline of our project about Beijing opera script gener

midon 1 Jan 14, 2022