ReferFormer - Official Implementation of ReferFormer

Overview

License Framework

PWC PWC

The official implementation of the paper:

Language as Queries for Referring
Video Object Segmentation

Language as Queries for Referring Video Object Segmentation

Jiannan Wu, Yi Jiang, Peize Sun, Zehuan Yuan, Ping Luo

Abstract

In this work, we propose a simple and unified framework built upon Transformer, termed ReferFormer. It views the language as queries and directly attends to the most relevant regions in the video frames. Concretely, we introduce a small set of object queries conditioned on the language as the input to the Transformer. In this manner, all the queries are obligated to find the referred objects only. They are eventually transformed into dynamic kernels which capture the crucial object-level information, and play the role of convolution filters to generate the segmentation masks from feature maps. The object tracking is achieved naturally by linking the corresponding queries across frames. This mechanism greatly simplifies the pipeline and the end-to-end framework is significantly different from the previous methods. Extensive experiments on Ref-Youtube-VOS, Ref-DAVIS17, A2D-Sentences and JHMDB-Sentences show the effectiveness of ReferFormer.

Requirements

We test the codes in the following environments, other versions may also be compatible:

  • CUDA 11.1
  • Python 3.7
  • Pytorch 1.8.1

Installation

Please refer to install.md for installation.

Data Preparation

Please refer to data.md for data preparation.

We provide the pretrained model for different visual backbones. You may download them here and put them in the directory pretrained_weights.

After the organization, we expect the directory struture to be the following:

ReferFormer/
├── data/
│   ├── ref-youtube-vos/
│   ├── ref-davis/
│   ├── a2d_sentences/
│   ├── jhmdb_sentences/
├── davis2017/
├── datasets/
├── models/
├── scipts/
├── tools/
├── util/
├── pretrained_weights/
├── eval_davis.py
├── main.py
├── engine.py
├── inference_ytvos.py
├── inference_davis.py
├── opts.py
...

Model Zoo

All the models are trained using 8 NVIDIA Tesla V100 GPU. You may change the --backbone parameter to use different backbones (see here).

Note: If you encounter the OOM error, please add the command --use_checkpoint (we add this command for Swin-L, Video-Swin-S and Video-Swin-B models).

Ref-Youtube-VOS

To evaluate the results, please upload the zip file to the competition server.

Backbone J&F CFBI J&F Pretrain Model Submission CFBI Submission
ResNet-50 55.6 59.4 weight model link link
ResNet-101 57.3 60.3 weight model link link
Swin-T 58.7 61.2 weight model link link
Swin-L 62.4 63.3 weight model link link
Video-Swin-T* 55.8 - - model link -
Video-Swin-T 59.4 - weight model link -
Video-Swin-S 60.1 - weight model link -
Video-Swin-B 62.9 - weight model link -

* indicates the model is trained from scratch.

Ref-DAVIS17

As described in the paper, we report the results using the model trained on Ref-Youtube-VOS without finetune.

Backbone J&F J F Model
ResNet-50 58.5 55.8 61.3 model
Swin-L 60.5 57.6 63.4 model
Video-Swin-B 61.1 58.1 64.1 model

A2D-Sentences

The pretrained models are the same as those provided for Ref-Youtube-VOS.

Backbone Overall IoU Mean IoU mAP Pretrain Model
Video-Swin-T 77.6 69.6 52.8 weight model | log
Video-Swin-S 77.7 69.8 53.9 weight model | log
Video-Swin-B 78.6 70.3 55.0 weight model | log

JHMDB-Sentences

As described in the paper, we report the results using the model trained on A2D-Sentences without finetune.

Backbone Overall IoU Mean IoU mAP Model
Video-Swin-T 71.9 71.0 42.2 model
Video-Swin-S 72.8 71.5 42.4 model
Video-Swin-B 73.0 71.8 43.7 model

Get Started

Please see Ref-Youtube-VOS, Ref-DAVIS17, A2D-Sentences and JHMDB-Sentences for details.

Acknowledgement

This repo is based on Deformable DETR and VisTR. We also refer to the repositories MDETR and MTTR. Thanks for their wonderful works.

Citation

@article{wu2022referformer,
      title={Language as Queries for Referring Video Object Segmentation}, 
      author={Jiannan Wu and Yi Jiang and Peize Sun and Zehuan Yuan and Ping Luo},
      journal={arXiv preprint arXiv:2201.00487},
      year={2022},
}
Owner
Jonas Wu
The University of Hong Kong. PhD Candidate. Computer Vision.
Jonas Wu
level1-image-classification-level1-recsys-09 created by GitHub Classroom

level1-image-classification-level1-recsys-09 ❗ 주제 설명 COVID-19 Pandemic 상황 속 마스크 착용 유무 판단 시스템 구축 마스크 착용 여부, 성별, 나이 총 세가지 기준에 따라 총 18개의 class로 구분하는 모델 ?

6 Mar 17, 2022
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C

- 8 Sep 27, 2022
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF

Simon Meister 270 Nov 06, 2022
PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages

PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages Abstract NLP applications for code-mixed (CM) or mix-li

Mohsin Ali, Mohammed 1 Nov 12, 2021
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
code for generating data set ES-ImageNet with corresponding training code

es-imagenet-master code for generating data set ES-ImageNet with corresponding training code dataset generator some codes of ODG algorithm The variabl

Ordinarabbit 18 Dec 25, 2022
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
CCP dataset from Clothing Co-Parsing by Joint Image Segmentation and Labeling

Clothing Co-Parsing (CCP) Dataset Clothing Co-Parsing (CCP) dataset is a new clothing database including elaborately annotated clothing items. 2, 098

Wei Yang 434 Dec 24, 2022
Trax — Deep Learning with Clear Code and Speed

Trax — Deep Learning with Clear Code and Speed Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively us

Google 7.3k Dec 26, 2022
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
Official Repository for Machine Learning class - Physics Without Frontiers 2021

PWF 2021 Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fome

36 Aug 06, 2022
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022
PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recur

Jie Lei 雷杰 151 Jan 06, 2023