Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

Overview

fcn - Fully Convolutional Networks

PyPI Version Python Versions GitHub Actions

Chainer implementation of Fully Convolutional Networks.

Installation

pip install fcn

Inference

Inference is done as below:

# forwaring of the networks
img_file=https://farm2.staticflickr.com/1522/26471792680_a485afb024_z_d.jpg
fcn_infer.py --img-files $img_file --gpu -1 -o /tmp  # cpu mode
fcn_infer.py --img-files $img_file --gpu 0 -o /tmp   # gpu mode

Original Image: https://www.flickr.com/photos/faceme/26471792680/

Training

cd examples/voc
./download_datasets.py
./download_models.py

./train_fcn32s.py --gpu 0
# ./train_fcn16s.py --gpu 0
# ./train_fcn8s.py --gpu 0
# ./train_fcn8s_atonce.py --gpu 0

The accuracy of original implementation is computed with (evaluate.py) after converting the caffe model to chainer one using convert_caffe_to_chainermodel.py.
You can download vgg16 model from here: vgg16_from_caffe.npz.

FCN32s

Implementation Accuracy Accuracy Class Mean IU FWAVACC Model File
Original 90.4810 76.4824 63.6261 83.4580 fcn32s_from_caffe.npz
Ours (using vgg16_from_caffe.npz) 90.5668 76.8740 63.8180 83.5067 -

FCN16s

Implementation Accuracy Accuracy Class Mean IU FWAVACC Model File
Original 90.9971 78.0710 65.0050 84.2614 fcn16s_from_caffe.npz
Ours (using fcn32s_from_caffe.npz) 90.9671 78.0617 65.0911 84.2604 -
Ours (using fcn32s_voc_iter00092000.npz) 91.1009 77.2522 65.3628 84.3675 -

FCN8s

Implementation Accuracy Accuracy Class Mean IU FWAVACC Model File
Original 91.2212 77.6146 65.5126 84.5445 fcn8s_from_caffe.npz
Ours (using fcn16s_from_caffe.npz) 91.2513 77.1490 65.4789 84.5460 -
Ours (using fcn16s_voc_iter00100000.npz) 91.2608 78.1484 65.8444 84.6447 -

FCN8sAtOnce

Implementation Accuracy Accuracy Class Mean IU FWAVACC Model File
Original 91.1288 78.4979 65.3998 84.4326 fcn8s-atonce_from_caffe.npz
Ours (using vgg16_from_caffe.npz) 91.0883 77.3528 65.3433 84.4276 -

Left to right, FCN32s, FCN16s and FCN8s, which are fully trained using this repo. See above tables to see the accuracy.

License

See LICENSE.

Cite This Project

If you use this project in your research or wish to refer to the baseline results published in the README, please use the following BibTeX entry.

@misc{chainer-fcn2016,
  author =       {Ketaro Wada},
  title =        {{fcn: Chainer Implementation of Fully Convolutional Networks}},
  howpublished = {\url{https://github.com/wkentaro/fcn}},
  year =         {2016}
}
Owner
Kentaro Wada
I'm a final-year PhD student at Imperial College London working on computer vision and robotics.
Kentaro Wada
This repository contains the map content ontology used in narrative cartography

Narrative-cartography-ontology This repository contains the map content ontology used in narrative cartography, which is associated with a submission

Weiming Huang 0 Oct 31, 2021
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs We are trying hard to update the code, but it may take a while to complete due to our tight schedule rec

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

116 Jan 04, 2023
EfficientNetv2 TensorRT int8

EfficientNetv2_TensorRT_int8 EfficientNetv2模型实现来自https://github.com/d-li14/efficientnetv2.pytorch 环境配置 ubuntu:18.04 cuda:11.0 cudnn:8.0 tensorrt:7

34 Apr 24, 2022
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

Meta Research 89 Dec 18, 2022
Unofficial JAX implementations of Deep Learning models

JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX

107 Jan 05, 2023
The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies

REST The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies. Usage Download dataset Download

DMIRLAB 2 Mar 13, 2022
Python based framework for Automatic AI for Regression and Classification over numerical data.

Python based framework for Automatic AI for Regression and Classification over numerical data. Performs model search, hyper-parameter tuning, and high-quality Jupyter Notebook code generation.

BlobCity, Inc 141 Dec 21, 2022
Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors

PSML paper: Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors PSML_IONE,PSML_ABNE,PSML_DEEPLINK,PSML_SNNA: numpy

13 Nov 27, 2022
PyTorch implementation of DCT fast weight RNNs

DCT based fast weights This repository contains the official code for the paper: Training and Generating Neural Networks in Compressed Weight Space. T

Kazuki Irie 4 Dec 24, 2022
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation, NeurIPS 2021 Spotlight

PCAN for Multiple Object Tracking and Segmentation This is the offical implementation of paper PCAN for MOTS. We also present a trailer that consists

ETH VIS Group 328 Dec 29, 2022
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

1 Jun 02, 2022
Augmented Traffic Control: A tool to simulate network conditions

Augmented Traffic Control Full documentation for the project is available at http://facebook.github.io/augmented-traffic-control/. Overview Augmented

Meta Archive 4.3k Jan 08, 2023
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022
Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals"

The Temporal Robustness of Stochastic Signals Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals" Case stud

0 Oct 28, 2021
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Auto-Lambda This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationship

Shikun Liu 76 Dec 20, 2022