KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

Overview

KAPAO (Keypoints and Poses as Objects)

KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as objects within a dense anchor-based detection framework. When not using test-time augmentation (TTA), KAPAO is much faster and more accurate than previous single-stage methods like DEKR and HigherHRNet:

alt text

This repository contains the official PyTorch implementation for the paper:
Rethinking Keypoint Representations: Modeling Keypoints and Poses as Objects for Multi-Person Human Pose Estimation.

Our code was forked from ultralytics/yolov5 at commit 5487451.

Setup

  1. If you haven't already, install Anaconda or Miniconda.
  2. Create a new conda environment with Python 3.6: $ conda create -n kapao python=3.6.
  3. Activate the environment: $ conda activate kapao
  4. Clone this repo: $ git clone https://github.com/wmcnally/kapao.git
  5. Install the dependencies: $ cd kapao && pip install -r requirements.txt
  6. Download the trained models: $ sh data/scripts/download_models.sh

Inference Demos

Note: FPS calculations includes all processing, including inference, plotting / tracking, image resizing, etc. See demo script arguments for inference options.

Flash Mob Demo

This demo runs inference on a 720p dance video (native frame-rate of 25 FPS).

alt text

To display the inference results in real-time:
$ python demos/flash_mob.py --weights kapao_s_coco.pt --display --fps

To create the GIF above:
$ python demos/flash_mob.py --weights kapao_s_coco.pt --start 188 --end 196 --gif --fps

Squash Demo

This demo runs inference on a 1080p slow motion squash video (native frame-rate of 25 FPS). It uses a simple player tracking algorithm based on the frame-to-frame pose differences.

alt text

To display the inference results in real-time:
$ python demos/squash.py --weights kapao_s_coco.pt --display --fps

To create the GIF above:
$ python demos/squash.py --weights kapao_s_coco.pt --start 42 --end 50 --gif --fps

COCO Experiments

Download the COCO dataset: $ sh data/scripts/get_coco_kp.sh

Validation (without TTA)

  • KAPAO-S (63.0 AP): $ python val.py --rect
  • KAPAO-M (68.5 AP): $ python val.py --rect --weights kapao_m_coco.pt
  • KAPAO-L (70.6 AP): $ python val.py --rect --weights kapao_l_coco.pt

Validation (with TTA)

  • KAPAO-S (64.3 AP): $ python val.py --scales 0.8 1 1.2 --flips -1 3 -1
  • KAPAO-M (69.6 AP): $ python val.py --weights kapao_m_coco.pt \
    --scales 0.8 1 1.2 --flips -1 3 -1
  • KAPAO-L (71.6 AP): $ python val.py --weights kapao_l_coco.pt \
    --scales 0.8 1 1.2 --flips -1 3 -1

Testing

  • KAPAO-S (63.8 AP): $ python val.py --scales 0.8 1 1.2 --flips -1 3 -1 --task test
  • KAPAO-M (68.8 AP): $ python val.py --weights kapao_m_coco.pt \
    --scales 0.8 1 1.2 --flips -1 3 -1 --task test
  • KAPAO-L (70.3 AP): $ python val.py --weights kapao_l_coco.pt \
    --scales 0.8 1 1.2 --flips -1 3 -1 --task test

Training

The following commands were used to train the KAPAO models on 4 V100s with 32GB memory each.

KAPAO-S:

python -m torch.distributed.launch --nproc_per_node 4 train.py \
--img 1280 \
--batch 128 \
--epochs 500 \
--data data/coco-kp.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5s6.pt \
--project runs/s_e500 \
--name train \
--workers 128

KAPAO-M:

python train.py \
--img 1280 \
--batch 72 \
--epochs 500 \
--data data/coco-kp.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5m6.pt \
--project runs/m_e500 \
--name train \
--workers 128

KAPAO-L:

python train.py \
--img 1280 \
--batch 48 \
--epochs 500 \
--data data/coco-kp.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5l6.pt \
--project runs/l_e500 \
--name train \
--workers 128

Note: DDP is usually recommended but we found training was less stable for KAPAO-M/L using DDP. We are investigating this issue.

CrowdPose Experiments

  • Install the CrowdPose API to your conda environment:
    $ cd .. && git clone https://github.com/Jeff-sjtu/CrowdPose.git
    $ cd CrowdPose/crowdpose-api/PythonAPI && sh install.sh && cd ../../../kapao
  • Download the CrowdPose dataset: $ sh data/scripts/get_crowdpose.sh

Testing

  • KAPAO-S (63.8 AP): $ python val.py --data crowdpose.yaml \
    --weights kapao_s_crowdpose.pt --scales 0.8 1 1.2 --flips -1 3 -1
  • KAPAO-M (67.1 AP): $ python val.py --data crowdpose.yaml \
    --weights kapao_m_crowdpose.pt --scales 0.8 1 1.2 --flips -1 3 -1
  • KAPAO-L (68.9 AP): $ python val.py --data crowdpose.yaml \
    --weights kapao_l_crowdpose.pt --scales 0.8 1 1.2 --flips -1 3 -1

Training

The following commands were used to train the KAPAO models on 4 V100s with 32GB memory each. Training was performed on the trainval split with no validation. The test results above were generated using the last model checkpoint.

KAPAO-S:

python -m torch.distributed.launch --nproc_per_node 4 train.py \
--img 1280 \
--batch 128 \
--epochs 300 \
--data data/crowdpose.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5s6.pt \
--project runs/cp_s_e300 \
--name train \
--workers 128 \
--noval

KAPAO-M:

python train.py \
--img 1280 \
--batch 72 \
--epochs 300 \
--data data/coco-kp.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5m6.pt \
--project runs/cp_m_e300 \
--name train \
--workers 128 \
--noval

KAPAO-L:

python train.py \
--img 1280 \
--batch 48 \
--epochs 300 \
--data data/crowdpose.yaml \
--hyp data/hyps/hyp.kp-p6.yaml \
--val-scales 1 \
--val-flips -1 \
--weights yolov5l6.pt \
--project runs/cp_l_e300 \
--name train \
--workers 128 \
--noval

Acknowledgements

This work was supported in part by Compute Canada, the Canada Research Chairs Program, the Natural Sciences and Engineering Research Council of Canada, a Microsoft Azure Grant, and an NVIDIA Hardware Grant.

If you find this repo is helpful in your research, please cite our paper:

@article{mcnally2021kapao,
  title={Rethinking Keypoint Representations: Modeling Keypoints and Poses as Objects for Multi-Person Human Pose Estimation},
  author={McNally, William and Vats, Kanav and Wong, Alexander and McPhee, John},
  journal={arXiv preprint arXiv:2111.08557},
  year={2021}
}

Please also consider citing our previous works:

@inproceedings{mcnally2021deepdarts,
  title={DeepDarts: Modeling Keypoints as Objects for Automatic Scorekeeping in Darts using a Single Camera},
  author={McNally, William and Walters, Pascale and Vats, Kanav and Wong, Alexander and McPhee, John},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={4547--4556},
  year={2021}
}

@article{mcnally2021evopose2d,
  title={EvoPose2D: Pushing the Boundaries of 2D Human Pose Estimation Using Accelerated Neuroevolution With Weight Transfer},
  author={McNally, William and Vats, Kanav and Wong, Alexander and McPhee, John},
  journal={IEEE Access},
  volume={9},
  pages={139403--139414},
  year={2021},
  publisher={IEEE}
}
Owner
Will McNally
PhD Candidate
Will McNally
Self-supervised Label Augmentation via Input Transformations (ICML 2020)

Self-supervised Label Augmentation via Input Transformations Authors: Hankook Lee, Sung Ju Hwang, Jinwoo Shin (KAIST) Accepted to ICML 2020 Install de

hankook 96 Dec 29, 2022
PyTorch implementation for the paper Pseudo Numerical Methods for Diffusion Models on Manifolds

Pseudo Numerical Methods for Diffusion Models on Manifolds (PNDM) This repo is the official PyTorch implementation for the paper Pseudo Numerical Meth

Luping Liu (刘路平) 196 Jan 05, 2023
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
Real life contra a deep learning project built using mediapipe and openc

real-life-contra Description A python script that translates the body movement into in game control. Welcome to all new real life contra a deep learni

Programminghut 7 Jan 26, 2022
CowHerd is a partially-observed reinforcement learning environment

CowHerd is a partially-observed reinforcement learning environment, where the player walks around an area and is rewarded for milking cows. The cows try to escape and the player can place fences to h

Danijar Hafner 6 Mar 06, 2022
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022
MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data

This repository is the official PyTorch implementation of Meta-Balance. Find the paper on arxiv MetaBalance: High-Performance Neural Networks for Clas

Arpit Bansal 20 Oct 18, 2021
Newt - a Gaussian process library in JAX.

Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\

AaltoML 0 Nov 02, 2021
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
使用yolov5训练自己数据集(详细过程)并通过flask部署

使用yolov5训练自己的数据集(详细过程)并通过flask部署 依赖库 torch torchvision numpy opencv-python lxml tqdm flask pillow tensorboard matplotlib pycocotools Windows,请使用 pycoc

HB.com 19 Dec 28, 2022
An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance"

Lidar-Segementation An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance" from

Wangxu1996 135 Jan 06, 2023
5 Jan 05, 2023
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

Xinyan Zhao 29 Dec 26, 2022
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

👐 OpenHands: Sign Language Recognition Library Making Sign Language Recognition Accessible Check the documentation on how to use the library: ReadThe

AI4Bhārat 69 Dec 12, 2022
Realtime micro-expression recognition using OpenCV and PyTorch

Micro-expression Recognition Realtime micro-expression recognition from scratch using OpenCV and PyTorch Try it out with a webcam or video using the e

Irfan 35 Dec 05, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Hieu Duong 7 Jan 12, 2022
Towards Interpretable Deep Metric Learning with Structural Matching

DIML Created by Wenliang Zhao*, Yongming Rao*, Ziyi Wang, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for paper Towards Interpr

Wenliang Zhao 75 Nov 11, 2022