PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Related tags

GeolocationBAS
Overview

Background Activation Suppression for Weakly Supervised Object Localization

PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''. This repository contains PyTorch training code, inference code and pretrained models.

📋 Table of content

  1. 📎 Paper Link
  2. 💡 Abstract
  3. Motivation
  4. 📖 Method
  5. 📃 Requirements
  6. ✏️ Usage
    1. Start
    2. Download Datasets
    3. Training
    4. Inference
  7. 📊 Experimental Results
  8. ✉️ Statement
  9. 🔍 Citation

📎 Paper Link

Background Activation Suppression for Weakly Supervised Object Localization (link)

  • Authors: Pingyu Wu*, Wei Zhai*, Yang Cao
  • Institution: University of Science and Technology of China (USTC)

💡 Abstract

Weakly supervised object localization (WSOL) aims to localize the object region using only image-level labels as supervision. Recently a new paradigm has emerged by generating a foreground prediction map (FPM) to achieve the localization task. Existing FPM-based methods use cross-entropy (CE) to evaluate the foreground prediction map and to guide the learning of generator. We argue for using activation value to achieve more efficient learning. It is based on the experimental observation that, for a trained network, CE converges to zero when the foreground mask covers only part of the object region. While activation value increases until the mask expands to the object boundary, which indicates that more object areas can be learned by using activation value. In this paper, we propose a Background Activation Suppression (BAS) method. Specifically, an Activation Map Constraint module (AMC) is designed to facilitate the learning of generator by suppressing the background activation values. Meanwhile, by using the foreground region guidance and the area constraint, BAS can learn the whole region of the object. Furthermore, in the inference phase, we consider the prediction maps of different categories together to obtain the final localization results. Extensive experiments show that BAS achieves significant and consistent improvement over the baseline methods on the CUB-200-2011 and ILSVRC datasets.

Motivation


Motivation. (A) The entroy value of CE loss $w.r.t$ foreground mask and foreground activation value $w.r.t$ foreground mask. To illustrate the generality of this phenomenon, more examples are shown in the subfigure on the right. (B) Experimental procedure and related definitions. Implementation details of the experiment and further results are available in the Supplementary Material.

Exploratory Experiment

We introduce the implementation of the experiment, as shown in Fig. \ref{Exploratory Experiment} (A). For a given GT binary mask, the activation value (Activation) and cross-entropy (Entropy) corresponding to this mask are generated by masking the feature map. We erode and dilate the ground-truth mask with a convolution of kernel size $5n \times 5n$, obtain foreground masks with different area sizes by changing the value of $n$, and plot the activation value versus cross-entropy with the area as the horizontal axis, as shown in Fig. \ref{Exploratory Experiment} (B). By inverting the foreground mask, the corresponding background activation values for the foreground mask area are generated in the same way. In Fig. \ref{Exploratory Experiment} (C), we show the curves of entropy, foreground activation, and background activation with mask area. It can be noticed that both background activation and foreground activation values have a higher correlation with the mask compared to the entropy. We show more examples in the Supplementary Material.


Exploratory Experiment. Examples about the entroy value of CE loss $w.r.t$ foreground mask and foreground activation value $w.r.t$ foreground mask.

📖 Method


The architecture of the proposed BAS. In the training phase, the class-specific foreground prediction map $F^{fg}$ and the coupled background prediction map $F^{bg}$ are obtained by the generator, and then fed into the activation map constraint module together with the feature map $F$. In the inference phase, we utilize Top-k to generate the final localization map.

📃 Requirements

  • python 3.6.10
  • torch 1.4.0
  • torchvision 0.5.0
  • opencv 4.5.3

✏️ Usage

Start

git clone https://github.com/wpy1999/BAS.git
cd BAS

Download Datasets

Training

We will release our training code upon acceptance.

Inference

To test the CUB models, you can download the trained models from [ Google Drive (VGG16) ], [ Google Drive (Mobilenetv1) ], [ Google Drive (ResNet50) ], [ Google Drive (Inceptionv3) ], then run BAS_inference.py:

cd CUB
python BAS_inference.py --arch ${Backbone}

To test the ILSVRC models, you can download the trained models from [ Google Drive (VGG16) ], [ Google Drive (Mobilenetv1) ], [ Google Drive (ResNet50) ], [ Google Drive (Inceptionv3) ], then run BAS_inference.py:

cd ILSVRC
python BAS_inference.py --arch ${Backbone}

📊 Experimental Results



✉️ Statement

This project is for research purpose only, please contact us for the licence of commercial use. For any other questions please contact [email protected] or [email protected].

🔍 Citation

@inproceedings{BAS,
  title={Background Activation Suppression for Weakly Supervised Object Localization},
  author={Pingyu Wu and Wei Zhai and Yang Cao},
  journal={arXiv preprint arXiv:2112.00580},
  year={2021}
}
Software for Advanced Spatial Econometrics

GeoDaSpace Software for Advanced Spatial Econometrics GeoDaSpace current version 1.0 (32-bit) Development environment: Mac OSX 10.5.x (32-bit) wxPytho

GeoDa Center 38 Jan 03, 2023
A NASA MEaSUREs project to provide automated, low latency, global glacier flow and elevation change datasets

Notebooks A NASA MEaSUREs project to provide automated, low latency, global glacier flow and elevation change datasets This repository provides tools

NASA Jet Propulsion Laboratory 27 Oct 25, 2022
Using Global fishing watch's data to build a machine learning model that can identify illegal fishing and poaching activities through satellite and geo-location data.

Using Global fishing watch's data to build a machine learning model that can identify illegal fishing and poaching activities through satellite and geo-location data.

Ayush Mishra 3 May 06, 2022
Earthengine-py-notebooks - A collection of 360+ Jupyter Python notebook examples for using Google Earth Engine with interactive mapping

earthengine-py-notebooks A collection of 360+ Jupyter Python notebook examples for using Google Earth Engine with interactive mapping Contact: Qiushen

Qiusheng Wu 1.1k Dec 29, 2022
A part of HyRiver software stack for handling geospatial data manipulations

Package Description Status PyNHD Navigate and subset NHDPlus (MR and HR) using web services Py3DEP Access topographic data through National Map's 3DEP

Taher Chegini 5 Dec 14, 2022
A public data repository for datasets created from TransLink GTFS data.

TransLink Spatial Data What: TransLink is the statutory public transit authority for the Metro Vancouver region. This GitHub repository is a collectio

Henry Tang 3 Jan 14, 2022
Simple, concise geographical visualization in Python

Geographic visualizations for HoloViews. Build Status Coverage Latest dev release Latest release Docs What is it? GeoViews is a Python library that ma

HoloViz 445 Jan 02, 2023
A proof-of-concept jupyter extension which converts english queries into relevant python code

Text2Code for Jupyter notebook A proof-of-concept jupyter extension which converts english queries into relevant python code. Blog post with more deta

DeepKlarity 2.1k Dec 29, 2022
Raster-based Spatial Analysis for Python

🌍 xarray-spatial: Raster-Based Spatial Analysis in Python 📍 Fast, Accurate Python library for Raster Operations ⚡ Extensible with Numba ⏩ Scalable w

makepath 649 Jan 01, 2023
Specification for storing geospatial vector data (point, line, polygon) in Parquet

GeoParquet About This repository defines how to store geospatial vector data (point, lines, polygons) in Apache Parquet, a popular columnar storage fo

Open Geospatial Consortium 449 Dec 27, 2022
a Geolocator made in python

Geolocator A Geolocator made in python ✨ Features locates ur location using ur ip thats it! 💁‍♀️ How to use first download the locator.py file instal

Portgas D Ace 1 Oct 27, 2021
Geographic add-ons for Django REST Framework. Maintained by the OpenWISP Project.

Geographic add-ons for Django REST Framework. Maintained by the OpenWISP Project.

OpenWISP 982 Jan 06, 2023
A bot that tweets info and location map for new bicycle parking added to OpenStreetMap within a GeoJSON boundary.

Bike parking tweepy bot app A twitter bot app that searches for bicycle parking added to OpenStreetMap. Relies on AWS Lambda/S3, Python3, Tweepy, Flas

Angelo Trivisonno 1 Dec 19, 2021
OSMnx: Python for street networks. Retrieve, model, analyze, and visualize street networks and other spatial data from OpenStreetMap.

OSMnx OSMnx is a Python package that lets you download geospatial data from OpenStreetMap and model, project, visualize, and analyze real-world street

Geoff Boeing 4k Jan 08, 2023
A compilation of several single-beam bathymetry surveys of the Caribbean

Caribbean - Single-beam bathymetry This dataset is a compilation of several single-beam bathymetry surveys of the Caribbean ocean displaying a wide ra

Fatiando a Terra Datasets 0 Jan 20, 2022
A multi-page streamlit app for the geospatial community.

A multi-page streamlit app for the geospatial community.

Qiusheng Wu 522 Dec 30, 2022
Get Landsat surface reflectance time-series from google earth engine

geextract Google Earth Engine data extraction tool. Quickly obtain Landsat multispectral time-series for exploratory analysis and algorithm testing On

Loïc Dutrieux 50 Dec 15, 2022
Google Maps keeps old satellite imagery around for a while – this tool collects what's available for a user-specified region in the form of a GIF.

google-maps-at-88-mph The folks maintaining Google Maps regularly update the satellite imagery it serves its users, but outdated versions of the image

Noah Doersing 111 Sep 27, 2022
glTF to 3d Tiles Converter. Convert glTF model to Glb, b3dm or 3d tiles format.

gltf-to-3d-tiles glTF to 3d Tiles Converter. Convert glTF model to Glb, b3dm or 3d tiles format. Usage λ python main.py --help Usage: main.py [OPTION

58 Dec 27, 2022
Replace MSFS2020's bing map to google map

English verison here 中文 免责声明 本教程提到的方法仅用于研究和学习用途。我不对使用、拓展该教程及方法所造成的任何法律责任和损失负责。 背景 微软模拟飞行2020的地景使用了Bing的卫星地图,然而卫星地图比较老旧,很多地区都是几年前的图设置直接是没有的。这种现象在全球不同地区

hesicong 272 Dec 24, 2022