GPU Accelerated Non-rigid ICP for surface registration

Overview

GPU Accelerated Non-rigid ICP for surface registration

Introduction

Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve sparse least square problem, which is time consuming. In this repo, we implement a pytorch version NICP algorithm based on paper Amberg et al. Detailedly, we leverage the AMSGrad to optimize the linear regresssion, and then found nearest points iteratively. Additionally, we smooth the calculated mesh with laplacian smoothness term. With laplacian smoothness term, the wireframe is also more neat.


Quick Start

install

We use python3.8 and cuda10.2 for implementation. The code is tested on Ubuntu 20.04.

  • The pytorch3d cannot be installed directly from pip install pytorch3d, for the installation of pytorch3d, see pytorch3d.
  • For other packages, run
pip install -r requirements.txt
  • For the template face model, currently we use a processed version of BFM face model from 3DMMfitting-pytorch, download the BFM09_model_info.mat from 3DMMfitting-pytorch and put it into the ./BFM folder.
  • For demo, run
python demo_nicp.py

we show demo for NICP mesh2mesh and NICP mesh2pointcloud. We have two param sets for registration:

milestones = set([50, 80, 100, 110, 120, 130, 140])
stiffness_weights = np.array([50, 20, 5, 2, 0.8, 0.5, 0.35, 0.2])
landmark_weights = np.array([5, 2, 0.5, 0, 0, 0, 0, 0])

This param set is used for registration on fine grained mesh

milestones = set([50, 100])
stiffness_weights = np.array([50, 20, 5])
landmark_weights = np.array([50, 20, 5])

This param set is used for registration on noisy point clouds

Templated Model

You can also use your own templated face model with manually specified landmarks.

Todo

Currently we write some batchwise functions, but batchwise NICP is not supported now. We will support batch NICP in further releases.

You might also like...
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

GrabGpu_py: a scripts for grab gpu when gpu is free

GrabGpu_py a scripts for grab gpu when gpu is free. WaitCondition: gpu_memory

A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

A non-linear, non-parametric Machine Learning method capable of modeling complex datasets
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

Code for
Code for "Learning to Segment Rigid Motions from Two Frames".

rigidmask Code for "Learning to Segment Rigid Motions from Two Frames". ** This is a partial release with inference and evaluation code.

Weakly Supervised Learning of Rigid 3D Scene Flow
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these environments (PPO, SAC, evolutionary strategy, and direct trajectory optimization are implemented).

Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Comments
  • Lack of file “BFM09_model_info.mat”

    Lack of file “BFM09_model_info.mat”

    Traceback (most recent call last): File "demo_nicp.py", line 28, in bfm_meshes, bfm_lm_index = load_bfm_model(torch.device('cuda:0')) File "/data/pytorch-nicp/bfm_model.py", line 15, in load_bfm_model bfm_meta_data = loadmat('BFM/BFM09_model_info.mat') File "/root/anaconda3/envs/pytorch3d/lib/python3.8/site-packages/scipy/io/matlab/mio.py", line 224, in loadmat with _open_file_context(file_name, appendmat) as f: File "/root/anaconda3/envs/pytorch3d/lib/python3.8/contextlib.py", line 113, in enter return next(self.gen) File "/root/anaconda3/envs/pytorch3d/lib/python3.8/site-packages/scipy/io/matlab/mio.py", line 17, in _open_file_context f, opened = _open_file(file_like, appendmat, mode) File "/root/anaconda3/envs/pytorch3d/lib/python3.8/site-packages/scipy/io/matlab/mio.py", line 45, in _open_file return open(file_like, mode), True FileNotFoundError: [Errno 2] No such file or directory: 'BFM/BFM09_model_info.mat'

    In 3DMMfitting-pytorch, there are only these files: BFM_exp_idx.mat BFM_front_idx.mat facemodel_info.mat README.md select_vertex_id.mat similarity_Lm3D_all.mat std_exp.txt

    opened by 675492062 2
  • What is the expected time needed for running demo_nicp.py?

    What is the expected time needed for running demo_nicp.py?

    Hello,

    On my computer it seems quite slow to run demo_nicp.py. At least it took more than 1 minutes to get final.obj. Is it correct?

    I ranAMM_NRR for non-rigit ICP registration with two 7000 vertices meshes. It needs ca 1 second with CPU on my computer. With GPU, it might be possible to do the same work in less than 100 ms?

    Thank you!

    opened by 1939938853 0
  • Hi, with landmarks: `landmarks = torch.from_numpy(np.array(landmarks)).to(device).long()`, maybe you can  reshape landmarks from torch.Size([1, 1, 68, 2]) to  torch.Size([1, 68, 2])

    Hi, with landmarks: `landmarks = torch.from_numpy(np.array(landmarks)).to(device).long()`, maybe you can reshape landmarks from torch.Size([1, 1, 68, 2]) to torch.Size([1, 68, 2])

    Hi, with landmarks: landmarks = torch.from_numpy(np.array(landmarks)).to(device).long(), maybe you can reshape landmarks from torch.Size([1, 1, 68, 2]) to torch.Size([1, 68, 2])

    Originally posted by @wuhaozhe in https://github.com/wuhaozhe/pytorch-nicp/issues/3#issuecomment-971453681 hi!I got output as torch.Size([1, 68, 512, 3]) torch.Size([1, 68, 2]) torch.Size([1, 512, 512, 3]) I think the shape of following tensors are right, but I meet the same problem. lm_vertex = torch.gather(lm_vertex, 2, column_index) RuntimeError: CUDA error: device-side assert triggered

    landmarks = torch.from_numpy(np.array(landmarks)).to(device).long()
    
    row_index = landmarks[:, :, 1].view(landmarks.shape[0], -1)
    column_index = landmarks[:, :, 0].view(landmarks.shape[0], -1)
    row_index = row_index.unsqueeze(2).unsqueeze(3).expand(landmarks.shape[0], landmarks.shape[1], shape_img.shape[2], shape_img.shape[3])
    column_index = column_index.unsqueeze(1).unsqueeze(3).expand(landmarks.shape[0], landmarks.shape[1], landmarks.shape[1], shape_img.shape[3])
    print(row_index.shape, landmarks.shape, shape_img.shape)
    
    opened by alicedingyueming 1
  • RuntimeError

    RuntimeError

    Traceback (most recent call last): File "demo_nicp.py", line 27, in target_lm_index, lm_mask = get_mesh_landmark(norm_meshes, dummy_render) File "/data/pytorch-nicp/landmark.py", line 37, in get_mesh_landmark row_index = row_index.unsqueeze(2).unsqueeze(3).expand(landmarks.shape[0], landmarks.shape[1], shape_img.shape[2], shape_img.shape[3]) RuntimeError: The expanded size of the tensor (1) must match the existing size (2) at non-singleton dimension 1. Target sizes: [1, 1, 512, 3]. Tensor sizes: [1, 2, 1, 1]

    I have already configure the environment,but it seems have some problems in the code.What can I do to solve this problem.

    opened by 675492062 8
Releases(v0.1)
Owner
Haozhe Wu
Research interests in Computer Vision and Machine Learning.
Haozhe Wu
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
R-package accompanying the paper "Dynamic Factor Model for Functional Time Series: Identification, Estimation, and Prediction"

dffm The goal of dffm is to provide functionality to apply the methods developed in the paper “Dynamic Factor Model for Functional Time Series: Identi

Sven Otto 3 Dec 09, 2022
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Nidhal Baccouri 3k Jan 05, 2023
GPU-Accelerated Deep Learning Library in Python

Hebel GPU-Accelerated Deep Learning Library in Python Hebel is a library for deep learning with neural networks in Python using GPU acceleration with

Hannes Bretschneider 1.2k Dec 21, 2022
Simple cross-platform application for DaVinci surgical video frame annotation

About DaVid is a simple cross-platform GUI for annotating robotic and endoscopic surgical actions for use in deep-learning research. Features Simple a

Cyril Zakka 4 Oct 09, 2021
Baseline of DCASE 2020 task 4

Couple Learning for SED This repository provides the data and source code for sound event detection (SED) task. The improvement of the Couple Learning

21 Oct 18, 2022
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

Vítor Albiero 519 Dec 29, 2022
Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral)

Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral) Tianyu Wang*, Xiaowei Hu*, Chi-Wing Fu, and Pheng-Ann Hen

Steve Wong 51 Oct 20, 2022
OpenVINO黑客松比赛项目

Window_Guard OpenVINO黑客松比赛项目 英文名称:Window_Guard 中文名称:窗口卫士 硬件 树莓派4B 8G版本 一个磁石开关 USB摄像头(MP4视频文件也可以) 软件(库) OpenVINO RPi 使用方法 本项目使用的OPenVINO是是2021.3版本,并使用了

Tango 6 Jul 04, 2021
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 03, 2022
Framework for evaluating ANNS algorithms on billion scale datasets.

Billion-Scale ANN http://big-ann-benchmarks.com/ Install The only prerequisite is Python (tested with 3.6) and Docker. Works with newer versions of Py

Harsha Vardhan Simhadri 132 Dec 24, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
Acoustic mosquito detection code with Bayesian Neural Networks

HumBugDB Acoustic mosquito detection with Bayesian Neural Networks. Extract audio or features from our large-scale dataset on Zenodo. This repository

31 Nov 28, 2022
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Weakly Supervised Scene Text Detection using Deep Reinforcement Learning

Weakly Supervised Scene Text Detection using Deep Reinforcement Learning This repository contains the setup for all experiments performed in our Paper

Emanuel Metzenthin 3 Dec 16, 2022
Warning: This project does not have any current developer. See bellow.

Pylearn2: A machine learning research library Warning : This project does not have any current developer. We will continue to review pull requests and

Laboratoire d’Informatique des Systèmes Adaptatifs 2.7k Dec 26, 2022