The code release of paper Low-Light Image Enhancement with Normalizing Flow

Related tags

Deep LearningLLFlow
Overview

PWC

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow

Paper | Project Page

Low-Light Image Enhancement with Normalizing Flow
Yufei Wang, Renjie Wan, Wenhan Yang, Haoliang Li, Lap-pui Chau, Alex C. Kot
In AAAI'2022

Overall

Framework

Quantitative results

Evaluation on LOL

The evauluation results on LOL are as follows

Method PSNR SSIM LPIPS
LIME 16.76 0.56 0.35
RetinexNet 16.77 0.56 0.47
DRBN 20.13 0.83 0.16
Kind 20.87 0.80 0.17
KinD++ 21.30 0.82 0.16
LLFlow (Ours) 25.19 0.93 0.11

Computational Cost

Computational Cost The computational cost and performance of models are in the above table. We evaluate the cost using one image with a size 400×600. Ours(large) is the standard model reported in supplementary and Ours(small) is a model with reduced parameters. Both the training config files and pre-trained models are provided.

Visual Results

Visual comparison with state-of-the-art low-light image enhancement methods on LOL dataset.

Get Started

Dependencies and Installation

  • Python 3.8
  • Pytorch 1.9
  1. Clone Repo
git clone https://github.com/wyf0912/LLFlow.git
  1. Create Conda Environment
conda create --name LLFlow python=3.8
conda activate LLFlow
  1. Install Dependencies
cd LLFlow
pip install -r requirements.txt

Pretrained Model

We provide the pre-trained models with the following settings:

  • A light weight model with promising performance trained on LOL [Google drive] with training config file ./confs/LOL_smallNet.yml
  • A standard-sized model trained on LOL [Google drive] with training config file ./confs/LOL-pc.yml.
  • A standard-sized model trained on VE-LOL [Google drive] with training config file ./confs/LOLv2-pc.yml.

Test

You can check the training log to obtain the performance of the model. You can also directly test the performance of the pre-trained model as follows

  1. Modify the paths to dataset and pre-trained mode. You need to modify the following path in the config files in ./confs
#### Test Settings
dataroot_GT # only needed for testing with paired data
dataroot_LR
model_path
  1. Test the model

To test the model with paired data and obtain the evaluation results, e.g., PSNR, SSIM, and LPIPS.

python test.py --opt your_config_path
# You need to specify an appropriate config file since it stores the config of the model, e.g., the number of layers.

To test the model with unpaired data

python test_unpaired.py --opt your_config_path
# You need to specify an appropriate config file since it stores the config of the model, e.g., the number of layers.

You can check the output in ../results.

Train

All logging files in the training process, e.g., log message, checkpoints, and snapshots, will be saved to ./experiments.

  1. Modify the paths to dataset in the config yaml files. We provide the following training configs for both LOL and VE-LOL benchmarks. You can also create your own configs for your own dataset.
.\confs\LOL_smallNet.yml
.\confs\LOL-pc.yml
.\confs\LOLv2-pc.yml

You need to modify the following terms

datasets.train.root
datasets.val.root
gpu_ids: [0] # Our model can be trained using a single GPU with memory>20GB. You can also train the model using multiple GPUs by adding more GPU ids in it.
  1. Train the network.
python train.py --opt your_config_path

Citation

If you find our work useful for your research, please cite our paper

@article{wang2021low,
  title={Low-Light Image Enhancement with Normalizing Flow},
  author={Wang, Yufei and Wan, Renjie and Yang, Wenhan and Li, Haoliang and Chau, Lap-Pui and Kot, Alex C},
  journal={arXiv preprint arXiv:2109.05923},
  year={2021}
}

Contact

If you have any question, please feel free to contact us via [email protected].

Owner
Yufei Wang
PhD student @ Nanyang Technological University
Yufei Wang
🏅 The Most Comprehensive List of Kaggle Solutions and Ideas 🏅

🏅 Collection of Kaggle Solutions and Ideas 🏅

Farid Rashidi 2.3k Jan 08, 2023
PyTorch implementation of Off-policy Learning in Two-stage Recommender Systems

Off-Policy-2-Stage This repo provides a PyTorch implementation of the MovieLens experiments for the following paper: Off-policy Learning in Two-stage

Jiaqi Ma 25 Dec 12, 2022
Torchreid: Deep learning person re-identification in PyTorch.

Torchreid Torchreid is a library for deep-learning person re-identification, written in PyTorch. It features: multi-GPU training support both image- a

Kaiyang 3.7k Jan 05, 2023
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

12 Dec 05, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022) Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Uns

Intelligent Vision for Robotics in Complex Environment 91 Dec 30, 2022
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
3 Apr 20, 2022
Pytorch ImageNet1k Loader with Bounding Boxes.

ImageNet 1K Bounding Boxes For some experiments, you might wanna pass only the background of imagenet images vs passing only the foreground. Here, I'v

Amin Ghiasi 11 Oct 15, 2022
Pytorch library for fast transformer implementations

Transformers are very successful models that achieve state of the art performance in many natural language tasks

Idiap Research Institute 1.3k Dec 30, 2022
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

InstanceRefer InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

63 Dec 07, 2022
Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training.

Updates (2020/06/21) Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training. Pyr

1.3k Jan 04, 2023
HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference

HNECV This repository provides a reference implementation of HNECV as described in the paper: HNECV: Heterogeneous Network Embedding via Cloud model a

4 Jun 28, 2022
Machine learning for NeuroImaging in Python

nilearn Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive doc

919 Dec 25, 2022
Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

face-mask-detection Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scr

amirsalar 13 Jan 18, 2022
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022