Code accompanying "Adaptive Methods for Aggregated Domain Generalization"

Overview

Adaptive Methods for Aggregated Domain Generalization (AdaClust)

Official Pytorch Implementation of Adaptive Methods for Aggregated Domain Generalization

Xavier Thomas, Dhruv Mahajan, Alex Pentland, Abhimanyu Dubey

PWC PWC PWC PWC PWC

AdaClust related hyperparameters

  • num_clusters: Number of clusters

  • pca_dim: Required Feature space dimension after the SVD + Truncation step

  • offset: First Principal Eigenvector in the SVD + Truncation Step

  • clust_epoch: Defines the clustering schedule

    • clust_epoch = 0: cluster every 0, 1, 2, 4, 8, 16, ... epochs
    • clust_epoch = k, k>0: cluster every k epochs

Quick start

Download the datasets:

python3 -m domainbed.scripts.download \
       --data_dir=./domainbed/data

Train a model:

python3 -m domainbed.scripts.train\
       --data_dir=./domainbed/data/\
       --algorithm AdaClust\
       --dataset PACS\
       --test_env 3

More details at: https://github.com/facebookresearch/DomainBed

Run SWAD:

python3 train_all.py exp_name --dataset PACS --algorithm AdaClust --data_dir /my/datasets/path

More details at: https://github.com/khanrc/swad

Launch a sweep:

python -m domainbed.scripts.sweep launch\
       --data_dir=/my/datasets/path\
       --output_dir=/my/sweep/output/path\
       --command_launcher MyLauncher

Here, MyLauncher is your cluster's command launcher, as implemented in command_launchers.py. At the time of writing, the entire sweep trains tens of thousands of models (all algorithms x all datasets x 3 independent trials x 20 random hyper-parameter choices). You can pass arguments to make the sweep smaller:

python -m domainbed.scripts.sweep launch\
       --data_dir=/my/datasets/path\
       --output_dir=/my/sweep/output/path\
       --command_launcher MyLauncher\
       --algorithms ERM AdaClust\
       --datasets PACS VLCS\
       --n_hparams 5\
       --n_trials 1

Available model selection criteria

Model selection criteria differ in what data is used to choose the best hyper-parameters for a given model:

  • IIDAccuracySelectionMethod: A random subset from the data of the training domains.
  • LeaveOneOutSelectionMethod: A random subset from the data of a held-out (not training, not testing) domain.
  • OracleSelectionMethod: A random subset from the data of the test domain.

After all jobs have either succeeded or failed, you can delete the data from failed jobs with python -m domainbed.scripts.sweep delete_incomplete and then re-launch them by running python -m domainbed.scripts.sweep launch again. Specify the same command-line arguments in all calls to sweep as you did the first time; this is how the sweep script knows which jobs were launched originally.

To view the results of your sweep:

python -m domainbed.scripts.collect_results\
       --input_dir=/my/sweep/output/path

Running unit tests

DomainBed includes some unit tests and end-to-end tests. While not exhaustive, but they are a good sanity-check. To run the tests:

python -m unittest discover

By default, this only runs tests which don't depend on a dataset directory. To run those tests as well:

DATA_DIR=/my/datasets/path python -m unittest discover

Citation

@misc{thomas2021adaptive,
      title={Adaptive Methods for Aggregated Domain Generalization}, 
      author={Xavier Thomas and Dhruv Mahajan and Alex Pentland and Abhimanyu Dubey},
      year={2021},
      eprint={2112.04766},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

License

This source code is released under the MIT license, included here.

Owner
Xavier Thomas
Xavier Thomas
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 08, 2023
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
Distance-Ratio-Based Formulation for Metric Learning

Distance-Ratio-Based Formulation for Metric Learning Environment Python3 Pytorch (http://pytorch.org/) (version 1.6.0+cu101) json tqdm Preparing datas

Hyeongji Kim 1 Dec 07, 2022
PyTorch implementation of: Michieli U. and Zanuttigh P., "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations", CVPR 2021.

Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations This is the official PyTorch implementation

Multimedia Technology and Telecommunication Lab 42 Nov 09, 2022
Human annotated noisy labels for CIFAR-10 and CIFAR-100.

Dataloader for CIFAR-N CIFAR-10N noise_label = torch.load('./data/CIFAR-10_human.pt') clean_label = noise_label['clean_label'] worst_label = noise_lab

<a href=[email protected]"> 117 Nov 30, 2022
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
GAN-based 3D human pose estimation model for 3DV'17 paper

Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation". @inproceedings{jack20

Dominic Jack 15 Feb 27, 2021
This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive Selective Coding)

HCSC: Hierarchical Contrastive Selective Coding This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive

YUANFAN GUO 111 Dec 20, 2022
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
REGTR: End-to-end Point Cloud Correspondences with Transformers

REGTR: End-to-end Point Cloud Correspondences with Transformers This repository contains the source code for REGTR. REGTR utilizes multiple transforme

Zi Jian Yew 108 Dec 17, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
Brain tumor detection using Convolution-Neural Network (CNN)

Detect and Classify Brain Tumor using CNN. A system performing detection and classification by using Deep Learning Algorithms using Convolution-Neural Network (CNN).

assia 1 Feb 07, 2022
FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.

FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT Preparation For instructions on generating data, plea

Lizonghang 9 Dec 22, 2022