[NeurIPS '21] Adversarial Attacks on Graph Classification via Bayesian Optimisation (GRABNEL)

Related tags

Deep Learninggrabnel
Overview

Adversarial Attacks on Graph Classification via Bayesian Optimisation @ NeurIPS 2021

overall-pipeline

This repository contains the official implementation of GRABNEL, a Bayesian optimisation-based adversarial agent to conduct adversarial attacks on graph classification models. GRABNEL currently supports various topological attacks, such as via edge flipping (incl. both addition or deletion), node injection and edge swapping. We also include implementations of a number of baseline methods including random search, genetic algorithm [1] and a gradient-based white-box attacker (available on some victim model choices). We also implement a number of victim models, namely:

  • Graph convolution networks (GCN) [2]
  • Graph isomorphism networks (GIN) [3]
  • ChebyGIN [4] (only for MNIST-75sp task)
  • Graph U-Net [5]
  • S2V (only for the ER Graph task in [1])

For details please take a look at our paper: abstract / pdf.

The code repository also contains instructions for the TU datasets [6] in the DGL framework, as well as the MNIST-75sp dataset in [4]. For the Twitter dataset we used for node injection tasks, we are not authorised to redistribute the dataset and you have to ask for permission from the authors of [7] directly.

If you find our work to be useful for your research, please consider citing us:

Wan, Xingchen, Henry Kenlay, Binxin Ru, Arno Blaas, Michael A. Osborne, and Xiaowen Dong. "Adversarial Attacks on Graph Classifiers via Bayesian Optimisation." In Thirty-Fifth Conference on Neural Information Processing Systems. 2021.

Or in bibtex:

@inproceedings{wan2021adversarial,
  title={Adversarial Attacks on Graph Classifiers via Bayesian Optimisation},
  author={Wan, Xingchen and Kenlay, Henry and Ru, Binxin and Blaas, Arno and Osborne, Michael and Dong, Xiaowen},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}

Instructions for use

  1. Install the required packages in requirements.txt

For TU Dataset(s):

  1. Train a selected architecture (GCN/GIN). Taking an example of GCN training on the PROTEINS dataset. By default DGL will download the requested dataset under ~/.dgl directory. If it throws an error, you might have to manually download the dataset and add to the appropriate directory.
python3 train_model.py --dataset PROTEINS --model gcn --seed $YOUR_SEED 

This by default deposits the trained victim model under src/output/models and the training log under src/output/training_logs.

  1. Evaluate the victim model on a separate test set. Run
python3 evaluate_model.py --dataset PROTEINS --seed $YOUR_SEED  --model gcn

This by default will create evaluation logs under src/output/evaluation_logs.

  1. Run the attack algorithm.
cd scripts && python3 run_bo_tu.py --dataset PROTEINS --save_path $YOUR_SAVE_PATH --model_path $YOUR_MODEL_PATH --seed $YOUR_SEED --model gcn

With no method specified, the script runs GRABNEL by default. You may use the -m to specify if, for example, you'd like to run one of the baseline methods mentioned above instead.

For the MNIST-75sp task For MNIST-75sp, we use the pre-trained model released by the authors of [4] as the victim model, so there is no need to train a victim model separately (unless you wish to).

  1. Generate the MNIST-75sp dataset. Here we use an adapted script from [4], but added a converter to ensure that the dataset generated complies with the rest of our code base (DGL-compliant, etc). You need to download the MNIST dataset beforehand (or use the torchvision download facility. Either is fine)
cd data && python3 build_mnist.py -D mnist -d $YOUR_DATA_PATH -o $YOUR_SAVE_PATH  

The output should be a pickle file mnist_75sp.p. Place it under $PROJECT_ROOT/src/data/

  1. Download the pretrained model from https://github.com/bknyaz/graph_attention_pool. The pretrained checkpointed model we use is checkpoint_mnist-75sp_139255_epoch30_seed0000111.pth.tar. Deposit the model under src/output/models

  2. Run attack algorithm.

cd scripts && python3 run_bo_image_classification.py --dataset mnist

References

[1] Dai, Hanjun, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. "Adversarial attack on graph structured data." In International conference on machine learning, pp. 1115-1124. PMLR, 2018.

[2] Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).

[3] Xu, Keyulu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. "How powerful are graph neural networks?." arXiv preprint arXiv:1810.00826 (2018).

[4] Knyazev, Boris, Graham W. Taylor, and Mohamed R. Amer. "Understanding attention and generalization in graph neural networks." NeurIPS (2019).

[5] Gao, Hongyang, and Shuiwang Ji. "Graph u-nets." In international conference on machine learning, pp. 2083-2092. PMLR, 2019.

[6] Morris, Christopher, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neumann. "Tudataset: A collection of benchmark datasets for learning with graphs." arXiv preprint arXiv:2007.08663 (2020).

[7] Vosoughi, Soroush, Deb Roy, and Sinan Aral. "The spread of true and false news online." Science 359, no. 6380 (2018): 1146-1151.

Acknowledgements

The repository builds, directly or indirectly, on multiple open-sourced code bases available online. The authors would like to express their gratitudes towards the maintainers of the following repos:

  1. https://github.com/Hanjun-Dai/graph_adversarial_attack
  2. https://github.com/DSE-MSU/DeepRobust
  3. https://github.com/HongyangGao/Graph-U-Nets
  4. https://github.com/xingchenwan/nasbowl
  5. The Deep graph library team
  6. The grakel team (https://ysig.github.io/GraKeL/0.1a8/)
Owner
Xingchen Wan
PhD Student in Machine Learning @ University of Oxford
Xingchen Wan
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image

Ibai Gorordo 24 Nov 14, 2022
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks"

This repository is an official PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks". Th

Yu Wang (Jack) 13 Nov 18, 2022
Collections for the lasted paper about multi-view clustering methods (papers, codes)

Multi-View Clustering Papers Collections for the lasted paper about multi-view clustering methods (papers, codes). There also exists some repositories

Andrew Guan 10 Sep 20, 2022
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
User-friendly bulk RNAseq deconvolution using simulated annealing

Welcome to cellanneal - The user-friendly application for deconvolving omics data sets. cellanneal is an application for deconvolving biological mixtu

11 Dec 16, 2022
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images

Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images This repository contains the implementation of the following paper

Seonggwan Ko 9 Jul 30, 2022
Convex optimization for fun and profit.

CFMM Optimal Routing This repository contains the code needed to generate the figures used in the paper Optimal Routing for Constant Function Market M

Guillermo Angeris 183 Dec 29, 2022
Code for "NeRS: Neural Reflectance Surfaces for Sparse-View 3D Reconstruction in the Wild," in NeurIPS 2021

Code for Neural Reflectance Surfaces (NeRS) [arXiv] [Project Page] [Colab Demo] [Bibtex] This repo contains the code for NeRS: Neural Reflectance Surf

Jason Y. Zhang 234 Dec 30, 2022
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks

ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A

1 Feb 10, 2022
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels

PGDF This repo is the official implementation of our paper "Sample Prior Guided Robust Model Learning to Suppress Noisy Labels ". Citation If you use

CVSM Group - email: <a href=[email protected]"> 22 Dec 23, 2022