Pytorch reimplementation of PSM-Net: "Pyramid Stereo Matching Network"

Overview

This is a Pytorch Lightning version PSMNet which is based on JiaRenChang/PSMNet.

use python main.py to start training.

PSM-Net

Pytorch reimplementation of PSM-Net: "Pyramid Stereo Matching Network" paper (CVPR 2018) by Jia-Ren Chang and Yong-Sheng Chen.

Official repository: JiaRenChang/PSMNet

model

Usage

1) Requirements

  • Python3.5+
  • Pytorch0.4
  • Opencv-Python
  • Matplotlib
  • TensorboardX
  • Tensorboard

All dependencies are listed in requirements.txt, you execute below command to install the dependencies.

pip install -r requirements.txt

2) Train

usage: train.py [-h] [--maxdisp MAXDISP] [--logdir LOGDIR] [--datadir DATADIR]
                [--cuda CUDA] [--batch-size BATCH_SIZE]
                [--validate-batch-size VALIDATE_BATCH_SIZE]
                [--log-per-step LOG_PER_STEP]
                [--save-per-epoch SAVE_PER_EPOCH] [--model-dir MODEL_DIR]
                [--lr LR] [--num-epochs NUM_EPOCHS]
                [--num-workers NUM_WORKERS]

PSMNet

optional arguments:
  -h, --help            show this help message and exit
  --maxdisp MAXDISP     max diparity
  --logdir LOGDIR       log directory
  --datadir DATADIR     data directory
  --cuda CUDA           gpu number
  --batch-size BATCH_SIZE
                        batch size
  --validate-batch-size VALIDATE_BATCH_SIZE
                        batch size
  --log-per-step LOG_PER_STEP
                        log per step
  --save-per-epoch SAVE_PER_EPOCH
                        save model per epoch
  --model-dir MODEL_DIR
                        directory where save model checkpoint
  --lr LR               learning rate
  --num-epochs NUM_EPOCHS
                        number of training epochs
  --num-workers NUM_WORKERS
                        num workers in loading data

For example:

python train.py --batch-size 16 \
                --logdir log/exmaple \
                --num-epochs 500

3) Visualize result

This repository uses tensorboardX to visualize training result. Find your log directory and launch tensorboard to look over the result. The default log directory is /log.

tensorboard --logdir <your_log_dir>

Here are some of my training results (have been trained for 1000 epochs on KITTI2015):

disp

left

loss

error

4) Inference

usage: inference.py [-h] [--maxdisp MAXDISP] [--left LEFT] [--right RIGHT]
                    [--model-path MODEL_PATH] [--save-path SAVE_PATH]

PSMNet inference

optional arguments:
  -h, --help            show this help message and exit
  --maxdisp MAXDISP     max diparity
  --left LEFT           path to the left image
  --right RIGHT         path to the right image
  --model-path MODEL_PATH
                        path to the model
  --save-path SAVE_PATH
                        path to save the disp image

For example:

python inference.py --left test/left.png \
                    --right test/right.png \
                    --model-path checkpoint/08/best_model.ckpt \
                    --save-path test/disp.png

5) Pretrained model

A model trained for 1000 epochs on KITTI2015 dataset can be download here. (I choose the best model among the 1000 epochs)

state {
    'epoch': 857,
    '3px-error': 3.466
}

Task List

  • Train
  • Inference
  • KITTI2015 dataset
  • Scene Flow dataset
  • Visualize
  • Pretained model

Contact

Email: [email protected]

Welcome for any discussions!

Owner
XIAOTIAN LIU
XIAOTIAN LIU
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0

32 Nov 27, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

Alan Bi 576 Dec 29, 2022
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

Tengfei Wang 371 Dec 30, 2022
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

xmu-xiaoma66 7.7k Jan 05, 2023
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022
codes for Self-paced Deep Regression Forests with Consideration on Ranking Fairness

Self-paced Deep Regression Forests with Consideration on Ranking Fairness This is official codes for paper Self-paced Deep Regression Forests with Con

Learning in Vision 4 Sep 11, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models

octconv.pytorch PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octa

Duo Li 273 Dec 18, 2022
Efficient neural networks for analog audio effect modeling

micro-TCN Efficient neural networks for audio effect modeling

Christian Steinmetz 94 Dec 29, 2022
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir

Fangda Han 5 Sep 01, 2022
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022
Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN-v2 StackGAN-v1: Tensorflow implementation StackGAN-v1: Pytorch implementation Inception score evaluation Pytorch implementation for reproduci

Han Zhang 809 Dec 16, 2022
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually.

Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually. It uses the concept of Image Background Removal using DeepLab Architecture (based on Semantic Se

Devashi Choudhary 5 Aug 24, 2022
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022
Graph Transformer Architecture. Source code for

Graph Transformer Architecture Source code for the paper "A Generalization of Transformer Networks to Graphs" by Vijay Prakash Dwivedi and Xavier Bres

NTU Graph Deep Learning Lab 561 Jan 08, 2023
Character Controllers using Motion VAEs

Character Controllers using Motion VAEs This repo is the codebase for the SIGGRAPH 2020 paper with the title above. Please find the paper and demo at

Electronic Arts 165 Jan 03, 2023
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022