"3D Human Texture Estimation from a Single Image with Transformers", ICCV 2021

Overview

Texformer: 3D Human Texture Estimation from a Single Image with Transformers

This is the official implementation of "3D Human Texture Estimation from a Single Image with Transformers", ICCV 2021 (Oral)

Highlights

  • Texformer: a novel structure combining Transformer and CNN
  • Low-Rank Attention layer (LoRA) with linear complexity
  • Combination of RGB UV map and texture flow
  • Part-style loss
  • Face-structure loss

BibTeX

@inproceedings{xu2021texformer,
  title={{3D} Human Texture Estimation from a Single Image with Transformers},
  author={Xu, Xiangyu and Loy, Chen Change},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  year={2021}
}

Abstract

We propose a Transformer-based framework for 3D human texture estimation from a single image. The proposed Transformer is able to effectively exploit the global information of the input image, overcoming the limitations of existing methods that are solely based on convolutional neural networks. In addition, we also propose a mask-fusion strategy to combine the advantages of the RGB-based and texture-flow-based models. We further introduce a part-style loss to help reconstruct high-fidelity colors without introducing unpleasant artifacts. Extensive experiments demonstrate the effectiveness of the proposed method against state-of-the-art 3D human texture estimation approaches both quantitatively and qualitatively.

Overview

Overview of Texformer

The Query is a pre-computed color encoding of the UV space obtained by mapping the 3D coordinates of a standard human body mesh to the UV space. The Key is a concatenation of the input image and the 2D part-segmentation map. The Value is a concatenation of the input image and its 2D coordinates. We first feed the Query, Key, and Value into three CNNs to transform them into feature space. Then the multi-scale features are sent to the Transformer units to generate the Output features. The multi-scale Output features are processed and fused in another CNN, which produces the RGB UV map T, texture flow F, and fusion mask M. The final UV map is generated by combining T and the textures sampled with F using the fusion mask M. Note that we have skip connections between the same-resolution layers of the CNNs similar to [1] which have been omitted in the figure for brevity.

Visual Results

For each example, the image on the left is the input, and the image on the right is the rendered 3D human, where the human texture is predicted by the proposed Texformer, and the geometry is predicted by RSC-Net.

input1 input1       input1 input1

Install

  • Manage the environment with Anaconda
conda create -n texformer anaconda
conda activate texformer
  • Pytorch-1.4, CUDA-9.2
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=9.2 -c pytorch
  • Install Pytorch-neural-renderer according to the instructions here

Download

  • Download meta data, and put it in "./meta/".

  • Download pretrained model, and put it in "./pretrained".

  • We propose an enhanced Market-1501 dataset, termed as SMPLMarket, by equipping the original data of Market-1501 with SMPL estimation from RSC-Net and body part segmentation estimated by EANet. Please download the SMPLMarket dataset and put it in "./datasets/".

  • Other datasets: PRW, surreal, CUHK-SYSU. Please put these datasets in "./datasets/".

  • All the paths are set in "config.py".

Demo

Run the Texformer with human part segmentation from an off-the-shelf model:

python demo.py --img_path demo_imgs/img.png --seg_path demo_imgs/seg.png

If you don't want to run an external model for human part segmentation, you can use the human part segmentation of RSC-Net instead (note that this may affect the performance as the segmentation of RSC-Net is not very accurate due to the limitation of SMPL):

python demo.py --img_path demo_imgs/img.png

Train

Run the training code with default settings:

python trainer.py --exp_name texformer

Evaluation

Run the evaluation on the SPMLMarket dataset:

python eval.py --checkpoint_path ./pretrained/texformer_ep500.pt

References

[1] "3D Human Pose, Shape and Texture from Low-Resolution Images and Videos", IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

[2] "3D Human Shape and Pose from a Single Low-Resolution Image with Self-Supervised Learning", ECCV, 2020

[3] "SMPL: A Skinned Multi-Person Linear Model", SIGGRAPH Asia, 2015

[4] "Learning Spatial and Spatio-Temporal Pixel Aggregations for Image and Video Denoising", IEEE Transactions on Image Processing, 2020.

[5] "Learning Factorized Weight Matrix for Joint Filtering", ICML, 2020

Owner
XiangyuXu
XiangyuXu
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

PyTorch RL Minimal Implementations There are implementations of some reinforcement learning algorithms, whose characteristics are as follow: Less pack

Gemini Light 4 Dec 31, 2022
SpiroMask: Measuring Lung Function Using Consumer-Grade Masks

SpiroMask: Measuring Lung Function Using Consumer-Grade Masks Anonymised repository for paper submitted for peer review at ACM HEALTH (October 2021).

0 May 10, 2022
以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的斗地主ai

ddz-ai 介绍 斗地主是一种扑克游戏。游戏最少由3个玩家进行,用一副54张牌(连鬼牌),其中一方为地主,其余两家为另一方,双方对战,先出完牌的一方获胜。 ddz-ai以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的系统,使其经过大量训练后,能在实际游戏中获

freefuiiismyname 88 May 15, 2022
本步态识别系统主要基于GaitSet模型进行实现

本步态识别系统主要基于GaitSet模型进行实现。在尝试部署本系统之前,建立理解GaitSet模型的网络结构、训练和推理方法。 系统的实现效果如视频所示: 演示视频 由于模型较大,部分模型文件存储在百度云盘。 链接提取码:33mb 具体部署过程 1.下载代码 2.安装requirements.txt

16 Oct 22, 2022
Combining Diverse Feature Priors

Combining Diverse Feature Priors This repository contains code for reproducing the results of our paper. Paper: https://arxiv.org/abs/2110.08220 Blog

Madry Lab 5 Nov 12, 2022
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022
Not Suitable for Work (NSFW) classification using deep neural network Caffe models.

Open nsfw model This repo contains code for running Not Suitable for Work (NSFW) classification deep neural network Caffe models. Please refer our blo

Yahoo 5.6k Jan 05, 2023
StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation

StyleGAN2 with adaptive discriminator augmentation (ADA) — Official TensorFlow implementation Training Generative Adversarial Networks with Limited Da

NVIDIA Research Projects 1.7k Dec 29, 2022
Genpass - A Passwors Generator App With Python3

Genpass Welcom again into another python3 App this is simply an Passwors Generat

Mal4D 1 Jan 09, 2022
State-of-the-art language models can match human performance on many tasks

Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p

OpenAI 259 Jan 08, 2023
A basic implementation of Layer-wise Relevance Propagation (LRP) in PyTorch.

Layer-wise Relevance Propagation (LRP) in PyTorch Basic unsupervised implementation of Layer-wise Relevance Propagation (Bach et al., Montavon et al.)

Kai Fabi 28 Dec 26, 2022
DLFlow is a deep learning framework.

DLFlow是一套深度学习pipeline,它结合了Spark的大规模特征处理能力和Tensorflow模型构建能力。利用DLFlow可以快速处理原始特征、训练模型并进行大规模分布式预测,十分适合离线环境下的生产任务。利用DLFlow,用户只需专注于模型开发,而无需关心原始特征处理、pipeline构建、生产部署等工作。

DiDi 152 Oct 27, 2022
GANfolk: Using AI to create portraits of fictional people to sell as NFTs

GANfolk are AI-generated renderings of fictional people. Each image in the collection was created by a pair of Generative Adversarial Networks (GANs) with names and backstories also created with AI.

Robert A. Gonsalves 32 Dec 02, 2022
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join

Yujin Chen 72 Dec 12, 2022
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, L

3 Dec 02, 2022
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas

43 Nov 23, 2022