Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Overview

Infinitely Deep Bayesian Neural Networks with SDEs

This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stochastic variational inference. A rudimentary JAX implementation of differentiable SDE solvers is also provided, refer to torchsde [2] for a full set of differentiable SDE solvers in Pytorch and similarly to torchdiffeq [3] for differentiable ODE solvers.

Continuous-depth hidden unit trajectories in Neural ODE vs uncertain posterior dynamics SDE-BNN.

Installation

This library runs on jax==0.1.77 and torch==1.6.0. To install all other requirements:

pip install -r requirements.txt

Note: Package versions may change, refer to official JAX installation instructions here.

JaxSDE: Differentiable SDE Solvers in JAX

The jaxsde library contains SDE solvers in the Ito and Stratonovich form. Solvers of different orders can be specified with the following method={euler_maruyama|milstein|euler_heun} (strong orders 0.5|1|0.5 and orders 1|1|1 in the case of an additive noise SDE). Stochastic adjoint (sdeint_ito) training mode does not work efficiently yet, use sdeint_ito_fixed_grid for now. Tradeoff solver speed for precision during training or inference by adjusting --nsteps <# steps>.

Usage

Default solver: Backpropagation through the solver.

from jaxsde.jaxsde.sdeint import sdeint_ito_fixed_grid

y1 = sdeint_ito_fixed_grid(f, g, y0, ts, rng, fw_params, method="euler_maruyama")

Stochastic adjoint: Using O(1) memory instead of solving an adjoint SDE in the backward pass.

from jaxsde.jaxsde.sdeint import sdeint_ito

y1 = sdeint_ito(f, g, y0, ts, rng, fw_params, method="milstein")

Brax: Bayesian SDE Framework in JAX

Implementation of composable Bayesian layers in the stax API. Our SDE Bayesian layers can be used with the SDEBNN block composed with multiple parameterizations of time-dependent layers in diffeq_layers. Sticking-the-landing (STL) trick can be enabled during training with --stl for improving convergence rate. Augment the inputs by a custom amount --aug <integer>, set the number of samples averaged over with --nsamples <integer>. If memory constraints pose a problem, train in gradient accumulation mode: --acc_grad and gradient checkpointing: --remat.

Samples from SDEBNN-learned predictive prior and posterior density distributions.

Usage

All examples can be swapped in with different vision datasets. For better readability, tensorboard logging has been excluded (see torchbnn instead).

Toy 1D regression to learn complex posteriors:

python examples/jax/sdebnn_toy1d.py --ds cos --activn swish --loss laplace --kl_scale 1. --diff_const 0.2 --driftw_scale 0.1 --aug_dim 2 --stl --prior_dw ou

Image Classification:

To train an SDEBNN model:

python examples/jax/sdebnn_classification.py --output <output directory> --model sdenet --aug 2 --nblocks 2-2-2 --diff_coef 0.2 --fx_dim 64 --fw_dims 2-64-2 --nsteps 20 --nsamples 1

To train a ResNet baseline, specify --model resnet and for a Bayesian ResNet baseline, specify --meanfield_sdebnn.

TorchBNN: SDE-BNN in Pytorch

A PyTorch implementation of the Brax framework powered by the torchsde backend.

Usage

All examples can be swapped in with different vision datasets and includes tensorboard logging for critical metrics.

Toy 1D regression to learn multi-modal posterior:

python examples/torch/sdebnn_toy1d.py --output_dir <dst_path>

Arbitrarily expression approximate posteriors from learning non-Gaussian marginals.

Image Classification:

All hyperparameters can be found in the training script. Train with adjoint for memory efficient backpropagation and adaptive mode for adaptive computation (and ensure --adjoint_adaptive True if training with adjoint and adaptive modes).

python examples/torch/sdebnn_classification.py --train-dir <output directory> --data cifar10 --dt 0.05 --method midpoint --adjoint True --adaptive True --adjoint_adaptive True --inhomogeneous True

References

[1] Winnie Xu, Ricky T. Q. Chen, Xuechen Li, David Duvenaud. "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations." Preprint 2021. [arxiv]

[2] Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, David Duvenaud. "Scalable Gradients for Stochastic Differential Equations." AISTATS 2020. [arxiv]

[3] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud. "Neural Ordinary Differential Equations." NeurIPS. 2018. [arxiv]


If you found this library useful in your research, please consider citing

@article{xu2021sdebnn,
  title={Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations},
  author={Xu, Winnie and Chen, Ricky T. Q. and Li, Xuechen and Duvenaud, David},
  archivePrefix = {arXiv},
  year={2021}
}
Owner
Winnie Xu
Undergrad in CS/Stats/Math '22 @ UToronto. Working on something secret @cohere-ai. Deep neural networks @for-ai @VectorInstitute. Prev. @google-research @NVIDIA
Winnie Xu
Notebooks, slides and dataset of the CorrelAid Machine Learning Winter School

CorrelAid Machine Learning Winter School Welcome to the CorrelAid ML Winter School! Task The problem we want to solve is to classify trees in Roosevel

CorrelAid 12 Nov 23, 2022
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data arXiv This is the code base for weakly supervised NER. We provide a

Amazon 92 Jan 04, 2023
A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose

Face-Detection-flask-gunicorn-nginx-docker This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and

Pooya-Mohammadi 30 Dec 17, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
Sparse Physics-based and Interpretable Neural Networks

Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b

28 Jan 03, 2023
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
Attention mechanism with MNIST dataset

[TensorFlow] Attention mechanism with MNIST dataset Usage $ python run.py Result Training Loss graph. Test Each figure shows input digit, attention ma

YeongHyeon Park 12 Jun 10, 2022
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
Genpass - A Passwors Generator App With Python3

Genpass Welcom again into another python3 App this is simply an Passwors Generat

Mal4D 1 Jan 09, 2022
[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers This is the official PyTorch implementation and models for UP-DETR paper: @a

dddzg 430 Dec 23, 2022
Pytorch implementation of OCNet series and SegFix.

openseg.pytorch News 2021/09/14 MMSegmentation has supported our ISANet and refer to ISANet for more details. 2021/08/13 We have released the implemen

openseg-group 1.1k Dec 23, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

daniel grzech 14 Nov 21, 2022
Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

SSL_OSC Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

zaixizhang 2 May 14, 2022
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

Xumin Yu 31 Dec 24, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022
A new GCN model for Point Cloud Analyse

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for VA-GCN in pytorch. Classification (ModelNet10/40) Data Preparation D

12 Feb 02, 2022