Matlab Python Heuristic Battery Opt - SMOP conversion and manual conversion

Overview
SMOP is Small Matlab and Octave to Python compiler.
SMOP translates matlab to python. Despite obvious similarities between matlab and numeric python, there are enough differences to make manual translation infeasible in real life. SMOP generates human-readable python, which also appears to be faster than octave. Just how fast? Timing results for "Moving furniture" are shown in Table 1. It seems that for this program, translation to python resulted in about two times speedup, and additional two times speedup was achieved by compiling SMOP run-time library runtime.py to C, using cython. This pseudo-benchmark measures scalar performance, and my interpretation is that scalar computations are of less interest to the octave team.
octave-3.8.1 190 ms
smop+python-2.7 80 ms
smop+python-2.7+cython-0.20.1 40 ms
Table 1. SMOP performance  

News

October 15, 2014
Version 0.26.3 is available for beta testing. Next version 0.27 is planned to compile octave scripts library, which contains over 120 KLOC in almost 1,000 matlab files. There are 13 compilation errors with smop 0.26.3 .

Installation

  • Network installation is the best method if you just want it to run the example:

    $ easy_install smop --user
    
  • Install from the sources if you are behind a firewall:

    $ tar zxvf smop.tar.gz
    $ cd smop
    $ python setup.py install --user
    
  • Fork github repository if you need the latest fixes.

  • Finally, it is possible to use smop without doing the installation, but only if you already installed the dependences -- numpy and networkx:

    $ tar zxvf smop.tar.gz
    $ cd smop/smop
    $ python main.py solver.m
    $ python solver.py
    

Working example

We will translate solver.m to present a sample of smop features. The program was borrowed from the matlab programming competition in 2004 (Moving Furniture).To the left is solver.m. To the right is a.py --- its translation to python. Though only 30 lines long, this example shows many of the complexities of converting matlab code to python.

01   function mv = solver(ai,af,w)  01 def solver_(ai,af,w,nargout=1):
02   nBlocks = max(ai(:));          02     nBlocks=max_(ai[:])
03   [m,n] = size(ai);              03     m,n=size_(ai,nargout=2)
02 Matlab uses round brackets both for array indexing and for function calls. To figure out which is which, SMOP computes local use-def information, and then applies the following rule: undefined names are functions, while defined are arrays.
03 Matlab function size returns variable number of return values, which corresponds to returning a tuple in python. Since python functions are unaware of the expected number of return values, their number must be explicitly passed in nargout.
04   I = [0  1  0 -1];              04     I=matlabarray([0,1,0,- 1])
05   J = [1  0 -1  0];              05     J=matlabarray([1,0,- 1,0])
06   a = ai;                        06     a=copy_(ai)
07   mv = [];                       07     mv=matlabarray([])
04 Matlab array indexing starts with one; python indexing starts with zero. New class matlabarray derives from ndarray, but exposes matlab array behaviour. For example, matlabarray instances always have at least two dimensions -- the shape of I and J is [1 4].
06 Matlab array assignment implies copying; python assignment implies data sharing. We use explicit copy here.
07 Empty matlabarray object is created, and then extended at line 28. Extending arrays by out-of-bounds assignment is deprecated in matlab, but is widely used never the less. Python ndarray can't be resized except in some special cases. Instances of matlabarray can be resized except where it is too expensive.
08   while ~isequal(af,a)           08     while not isequal_(af,a):
09     bid = ceil(rand*nBlocks);    09         bid=ceil_(rand_() * nBlocks)
10     [i,j] = find(a==bid);        10         i,j=find_(a == bid,nargout=2)
11     r = ceil(rand*4);            11         r=ceil_(rand_() * 4)
12     ni = i + I(r);               12         ni=i + I[r]
13     nj = j + J(r);               13         nj=j + J[r]
09 Matlab functions of zero arguments, such as rand, can be used without parentheses. In python, parentheses are required. To detect such cases, used but undefined variables are assumed to be functions.
10 The expected number of return values from the matlab function find is explicitly passed in nargout.
12 Variables I and J contain instances of the new class matlabarray, which among other features uses one based array indexing.
14     if (ni<1) || (ni>m) ||       14         if (ni < 1) or (ni > m) or
               (nj<1) || (nj>n)                            (nj < 1) or (nj > n):
15         continue                 15             continue
16     end                          16
17     if a(ni,nj)>0                17         if a[ni,nj] > 0:
18         continue                 18           continue
19     end                          19
20     [ti,tj] = find(af==bid);     20         ti,tj=find_(af == bid,nargout=2)
21     d = (ti-i)^2 + (tj-j)^2;     21         d=(ti - i) ** 2 + (tj - j) ** 2
22     dn = (ti-ni)^2 + (tj-nj)^2;  22         dn=(ti - ni) ** 2 + (tj - nj) ** 2
23     if (d<dn) && (rand>0.05)     23         if (d < dn) and (rand_() > 0.05):
24         continue                 24             continue
25     end                          25
26     a(ni,nj) = bid;              26         a[ni,nj]=bid
27     a(i,j) = 0;                  27         a[i,j]=0
28     mv(end+1,[1 2]) = [bid r];   28         mv[mv.shape[0] + 1,[1,2]]=[bid,r]
29  end                             29
30                                  30     return mv

Implementation status

Random remarks

With less than five thousands lines of python code
SMOP does not pretend to compete with such polished products as matlab or octave. Yet, it is not a toy. There is an attempt to follow the original matlab semantics as close as possible. Matlab language definition (never published afaik) is full of dark corners, and SMOP tries to follow matlab as precisely as possible.
There is a price, too.
The generated sources are matlabic, rather than pythonic, which means that library maintainers must be fluent in both languages, and the old development environment must be kept around.
Should the generated program be pythonic or matlabic?

For example should array indexing start with zero (pythonic) or with one (matlabic)?

I beleive now that some matlabic accent is unavoidable in the generated python sources. Imagine matlab program is using regular expressions, matlab style. We are not going to translate them to python style, and that code will remain forever as a reminder of the program's matlab origin.

Another example. Matlab code opens a file; fopen returns -1 on error. Pythonic code would raise exception, but we are not going to do that. Instead, we will live with the accent, and smop takes this to the extreme --- the matlab program remains mostly unchanged.

It turns out that generating matlabic` allows for moving much of the project complexity out of the compiler (which is already complicated enough) and into the runtime library, where there is almost no interaction between the library parts.

Which one is faster --- python or octave? I don't know.
Doing reliable performance measurements is notoriously hard, and is of low priority for me now. Instead, I wrote a simple driver go.m and go.py and rewrote rand so that python and octave versions run the same code. Then I ran the above example on my laptop. The results are twice as fast for the python version. What does it mean? Probably nothing. YMMV.
ai = zeros(10,10);
af = ai;

ai(1,1)=2;
ai(2,2)=3;
ai(3,3)=4;
ai(4,4)=5;
ai(5,5)=1;

af(9,9)=1;
af(8,8)=2;
af(7,7)=3;
af(6,6)=4;
af(10,10)=5;

tic;
mv = solver(ai,af,0);
toc

Running the test suite:

$ cd smop
$ make check
$ make test

Command-line options

[email protected] ~/smop-github/smop $ python main.py -h
SMOP compiler version 0.25.1
Usage: smop [options] file-list
    Options:
    -V --version
    -X --exclude=FILES      Ignore files listed in comma-separated list FILES
    -d --dot=REGEX          For functions whose names match REGEX, save debugging
                            information in "dot" format (see www.graphviz.org).
                            You need an installation of graphviz to use --dot
                            option.  Use "dot" utility to create a pdf file.
                            For example:
                                $ python main.py fastsolver.m -d "solver|cbest"
                                $ dot -Tpdf -o resolve_solver.pdf resolve_solver.dot
    -h --help
    -o --output=FILENAME    By default create file named a.py
    -o- --output=-          Use standard output
    -s --strict             Stop on the first error
    -v --verbose

Owner
Tom Xu
Software Engineer, AI/ML SaaS Advocate, Scientific Simulations and Optimizations.
Tom Xu
This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Auto-Lambda This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationship

Shikun Liu 76 Dec 20, 2022
Monify: an Expense tracker Program implemented in a Graphical User Interface that allows users to keep track of their expenses

💳 MONIFY (EXPENSE TRACKER PRO) 💳 Description Monify is an Expense tracker Program implemented in a Graphical User Interface allows users to add inco

Moyosore Weke 1 Dec 14, 2021
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
Jigsaw Rate Severity of Toxic Comments

Jigsaw Rate Severity of Toxic Comments

Guanshuo Xu 66 Nov 30, 2022
A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Ruixu Geng(耿瑞旭) 16 Dec 16, 2022
Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes The codes for simu

1 Jan 12, 2022
atmaCup #11 の Public 4th / Pricvate 5th Solution のリポジトリです。

#11 atmaCup 2021-07-09 ~ 2020-07-21 に行われた #11 [初心者歓迎! / 画像編] atmaCup のリポジトリです。結果は Public 4th / Private 5th でした。 フレームワークは PyTorch で、実装は pytorch-image-m

Tawara 12 Apr 07, 2022
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022
Some methods for comparing network representations in deep learning and neuroscience.

Generalized Shape Metrics on Neural Representations In neuroscience and in deep learning, quantifying the (dis)similarity of neural representations ac

Alex Williams 45 Dec 27, 2022
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
Materials for my scikit-learn tutorial

Scikit-learn Tutorial Jake VanderPlas email: [email protected] twitter: @jakevdp gith

Jake Vanderplas 1.6k Dec 30, 2022
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022
Detecting drunk people through thermal images using Deep Learning (CNN)

Drunk Detection CNN Detecting drunk people through thermal images using Deep Learning (CNN) Dataset We used thermal images provided by Electronics Lab

Giacomo Ferretti 3 Oct 27, 2022
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023