(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

Overview

How Do Vision Transformers Work?

This repository provides a PyTorch implementation of "How Do Vision Transformers Work?" In the paper, we show that multi-head self-attentions (MSAs) for computer vision is NOT for capturing long-range dependency. In particular, we address the following three key questions of MSAs and Vision Transformers (ViTs):

  1. What properties of MSAs do we need to better optimize NNs? Do the long-range dependencies of MSAs help NNs learn?
  2. Do MSAs act like Convs? If not, how are they different?
  3. How can we harmonize MSAs with Convs? Can we just leverage their advantages?

We demonstrate that (1) MSAs flatten the loss landscapes, (2) MSA and Convs are complementary because MSAs are low-pass filters and convolutions (Convs) are high-pass filter, and (3) MSAs at the end of a stage significantly improve the accuracy.

Let's find the detailed answers below!

I. What Properties of MSAs Do We Need to Improve Optimization?

MSAs improve not only accuracy but also generalization by flattening the loss landscapes. Such improvement is primarily attributable to their data specificity, NOT long-range dependency 😱 Their weak inductive bias disrupts NN training. On the other hand, ViTs suffers from non-convex losses. MSAs allow negative Hessian eigenvalues in small data regimes. Large datasets and loss landscape smoothing methods alleviate this problem.

II. Do MSAs Act Like Convs?

MSAs and Convs exhibit opposite behaviors. For example, MSAs are low-pass filters, but Convs are high-pass filters. In addition, Convs are vulnerable to high-frequency noise but that MSAs are not. Therefore, MSAs and Convs are complementary.

III. How Can We Harmonize MSAs With Convs?

Multi-stage neural networks behave like a series connection of small individual models. In addition, MSAs at the end of a stage play a key role in prediction. Based on these insights, we propose design rules to harmonize MSAs with Convs. NN stages using this design pattern consists of a number of CNN blocks and one (or a few) MSA block. The design pattern naturally derives the structure of canonical Transformer, which has one MLP block for one MSA block.


In addition, we also introduce AlterNet, a model in which Conv blocks at the end of a stage are replaced with MSA blocks. Surprisingly, AlterNet outperforms CNNs not only in large data regimes but also in small data regimes. This contrasts with canonical ViTs, models that perform poorly on small amounts of data.

This repository is based on the official implementation of "Blurs Make Results Clearer: Spatial Smoothings to Improve Accuracy, Uncertainty, and Robustness". In this paper, we show that a simple (non-trainable) 2 ✕ 2 box blur filter improves accuracy, uncertainty, and robustness simultaneously by ensembling spatially nearby feature maps of CNNs. MSA is not simply generalized Conv, but rather a generalized (trainable) blur filter that complements Conv. Please check it out!

Getting Started

The following packages are required:

  • pytorch
  • matplotlib
  • notebook
  • ipywidgets
  • timm
  • einops
  • tensorboard
  • seaborn (optional)

We mainly use docker images pytorch/pytorch:1.9.0-cuda11.1-cudnn8-runtime for the code.

See classification.ipynb for image classification. Run all cells to train and test models on CIFAR-10, CIFAR-100, and ImageNet.

Metrics. We provide several metrics for measuring accuracy and uncertainty: Acuracy (Acc, ↑) and Acc for 90% certain results (Acc-90, ↑), negative log-likelihood (NLL, ↓), Expected Calibration Error (ECE, ↓), Intersection-over-Union (IoU, ↑) and IoU for certain results (IoU-90, ↑), Unconfidence (Unc-90, ↑), and Frequency for certain results (Freq-90, ↑). We also define a method to plot a reliability diagram for visualization.

Models. We provide AlexNet, VGG, pre-activation VGG, ResNet, pre-activation ResNet, ResNeXt, WideResNet, ViT, PiT, Swin, MLP-Mixer, and Alter-ResNet by default.

Visualizing the Loss Landscapes

Refer to losslandscape.ipynb for exploring the loss landscapes. It requires a trained model. Run all cells to get predictive performance of the model for weight space grid. We provide a sample loss landscape result.

Evaluating Robustness on Corrupted Datasets

Refer to robustness.ipynb for evaluation corruption robustness on corrupted datasets such as CIFAR-10-C and CIFAR-100-C. It requires a trained model. Run all cells to get predictive performance of the model on datasets which consist of data corrupted by 15 different types with 5 levels of intensity each. We provide a sample robustness result.

How to Apply MSA to Your Own Model

We find that MSA complements Conv (not replaces Conv), and MSA closer to the end of stage improves predictive performance significantly. Based on these insights, we propose the following build-up rules:

  1. Alternately replace Conv blocks with MSA blocks from the end of a baseline CNN model.
  2. If the added MSA block does not improve predictive performance, replace a Conv block located at the end of an earlier stage with an MSA
  3. Use more heads and higher hidden dimensions for MSA blocks in late stages.

In the animation above, we replace Convs of ResNet with MSAs one by one according to the build-up rules. Note that several MSAs in c3 harm the accuracy, but the MSA at the end of c2 improves it. As a result, surprisingly, the model with MSAs following the appropriate build-up rule outperforms CNNs even in the small data regime, e.g., CIFAR!

Caution: Investigate Loss Landscapes and Hessians With l2 Regularization on Augmented Datasets

Two common mistakes ⚠️ are investigating loss landscapes and Hessians (1) 'without considering l2 regularization' on (2) 'clean datasets'. However, note that NNs are optimized with l2 regularization on augmented datasets. Therefore, it is appropriate to visualize 'NLL + l2' on 'augmented datasets'. Measuring criteria without l2 on clean dataset would give incorrect (even opposite) results.

Citation

If you find this useful, please consider citing 📑 the paper and starring 🌟 this repository. Please do not hesitate to contact Namuk Park (email: namuk.park at gmail dot com, twitter: xxxnell) with any comments or feedback.

BibTex is TBD.

License

All code is available to you under Apache License 2.0. CNN models build off the torchvision models which are BSD licensed. ViTs build off the PyTorch Image Models and Vision Transformer - Pytorch which are Apache 2.0 and MIT licensed.

Copyright the maintainers.

Owner
xxxnell
Programmer & ML researcher
xxxnell
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee

442 Dec 16, 2022
PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments Introduction This repository is a PyTorch implementation of

11 Nov 28, 2022
A web application that provides real time temperature and humidity readings of a house.

About A web application which provides real time temperature and humidity readings of a house. If you're interested in the data collected so far click

Ben Thompson 3 Jan 28, 2022
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
Source code for our EMNLP'21 paper 《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》

Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ

46 Dec 12, 2022
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
Scalable, event-driven, deep-learning-friendly backtesting library

...Minimizing the mean square error on future experience. - Richard S. Sutton BTGym Scalable event-driven RL-friendly backtesting library. Build on

Andrew 922 Dec 27, 2022
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Karttikeya Manglam 40 Nov 18, 2022
Generative Handwriting using LSTM Mixture Density Network with TensorFlow

Generative Handwriting Demo using TensorFlow An attempt to implement the random handwriting generation portion of Alex Graves' paper. See my blog post

hardmaru 686 Nov 24, 2022
Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning

3 Jun 09, 2021
Iran Open Source Hackathon

Iran Open Source Hackathon is an open-source hackathon (duh) with the aim of encouraging participation in open-source contribution amongst Iranian dev

OSS Hackathon 121 Dec 25, 2022
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
Junction Tree Variational Autoencoder for Molecular Graph Generation (ICML 2018)

Junction Tree Variational Autoencoder for Molecular Graph Generation Official implementation of our Junction Tree Variational Autoencoder https://arxi

Wengong Jin 418 Jan 07, 2023
A forwarding MPI implementation that can use any other MPI implementation via an MPI ABI

MPItrampoline MPI wrapper library: MPI trampoline library: MPI integration tests: MPI is the de-facto standard for inter-node communication on HPC sys

Erik Schnetter 31 Dec 22, 2022
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022