We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

Related tags

Deep LearningConTNet
Overview

ConTNet

Introduction

ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large receptive field, limiting the performance of ConvNets on downstream tasks. (2) Transformer-based model is not robust enough and requires special training settings or hundreds of millions of images as the pretrain dataset, thereby limiting their adoption. ConTNet combines convolution and transformer alternately, which is very robust and can be optimized like ResNet unlike the recently-proposed transformer-based models (e.g., ViT, DeiT) that are sensitive to hyper-parameters and need many tricks when trained from scratch on a midsize dataset (e.g., ImageNet).

Main Results on ImageNet

name resolution [email protected] #params(M) FLOPs(G) model
Res-18 224x224 71.5 11.7 1.8
ConT-S 224x224 74.9 10.1 1.5
Res-50 224x224 77.1 25.6 4.0
ConT-M 224x224 77.6 19.2 3.1
Res-101 224x224 78.2 44.5 7.6
ConT-B 224x224 77.9 39.6 6.4
DeiT-Ti* 224x224 72.2 5.7 1.3
ConT-Ti* 224x224 74.9 5.8 0.8
Res-18* 224x224 73.2 11.7 1.8
ConT-S* 224x224 76.5 10.1 1.5
Res-50* 224x224 78.6 25.6 4.0
DeiT-S* 224x224 79.8 22.1 4.6
ConT-M* 224x224 80.2 19.2 3.1
Res-101* 224x224 80.0 44.5 7.6
DeiT-B* 224x224 81.8 86.6 17.6
ConT-B* 224x224 81.8 39.6 6.4

Note: * indicates training with strong augmentations.

Main Results on Downstream Tasks

Object detection results on COCO.

method backbone #params(M) FLOPs(G) AP APs APm APl
RetinaNet Res-50
ConTNet-M
32.0
27.0
235.6
217.2
36.5
37.9
20.4
23.0
40.3
40.6
48.1
50.4
FCOS Res-50
ConTNet-M
32.2
27.2
242.9
228.4
38.7
40.8
22.9
25.1
42.5
44.6
50.1
53.0
faster rcnn Res-50
ConTNet-M
41.5
36.6
241.0
225.6
37.4
40.0
21.2
25.4
41.0
43.0
48.1
52.0

Instance segmentation results on Cityscapes based on Mask-RCNN.

backbone APbb APsbb APmbb APlbb APmk APsmk APmmk APlmk
Res-50
ConT-M
38.2
40.5
21.9
25.1
40.9
44.4
49.5
52.7
34.7
38.1
18.3
20.9
37.4
41.0
47.2
50.3

Semantic segmentation results on cityscapes.

model mIOU
PSP-Res50 77.12
PSP-ConTM 78.28

Bib Citing

@article{yan2021contnet,
    title={ConTNet: Why not use convolution and transformer at the same time?},
    author={Haotian Yan and Zhe Li and Weijian Li and Changhu Wang and Ming Wu and Chuang Zhang},
    year={2021},
    journal={arXiv preprint arXiv:2104.13497}
}
Portfolio asset allocation strategies: from Markowitz to RNNs

Portfolio asset allocation strategies: from Markowitz to RNNs Research project to explore different approaches for optimal portfolio allocation starti

Luigi Filippo Chiara 1 Feb 05, 2022
TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

98 Dec 15, 2022
A Marvelous ChatBot implement using PyTorch.

PyTorch Marvelous ChatBot [Update] it's 2019 now, previously model can not catch up state-of-art now. So we just move towards the future a transformer

JinTian 223 Oct 18, 2022
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022
Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP"

DiLBERT Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP" Pretrained Model The pretrained model presented in the paper is

Kevin Roitero 2 Dec 15, 2022
Unofficial pytorch-lightning implement of Mip-NeRF

mipnerf_pl Unofficial pytorch-lightning implement of Mip-NeRF, Here are some results generated by this repository (pre-trained models are provided bel

Jianxin Huang 159 Dec 23, 2022
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

4 Aug 02, 2022
Public repo for the ICCV2021-CVAMD paper "Is it Time to Replace CNNs with Transformers for Medical Images?"

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
一个多语言支持、易使用的 OCR 项目。An easy-to-use OCR project with multilingual support.

AgentOCR 简介 AgentOCR 是一个基于 PaddleOCR 和 ONNXRuntime 项目开发的一个使用简单、调用方便的 OCR 项目 本项目目前包含 Python Package 【AgentOCR】 和 OCR 标注软件 【AgentOCRLabeling】 使用指南 Pytho

AgentMaker 98 Nov 10, 2022
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモ

FaceDetection-Anti-Spoof-Demo なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモです。 モデルはPINTO_model_zoo/191_anti-spoof-mn3からONNX形式のモデルを使用しています。 Requirement mediapipe

KazuhitoTakahashi 8 Nov 18, 2022
:fire: 2D and 3D Face alignment library build using pytorch

Face Recognition Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D an

Adrian Bulat 6k Dec 31, 2022
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Hrishikesh Kamath 31 Nov 20, 2022
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Juhong Min 165 Dec 28, 2022
Urban mobility simulations with Python3, RLlib (Deep Reinforcement Learning) and Mesa (Agent-based modeling)

Deep Reinforcement Learning for Smart Cities Documentation RLlib: https://docs.ray.io/en/master/rllib.html Mesa: https://mesa.readthedocs.io/en/stable

1 May 15, 2022