Blind visual quality assessment on 360° Video based on progressive learning

Related tags

Deep LearningProVQA
Overview

Blind visual quality assessment on omnidirectional or 360 video (ProVQA)

Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and Video

This repository contains the official PyTorch implementation of the following paper:

Blind VQA for 360° Video via Progressively Learning from Pixels, Frames and Video
Li Yang, Mai Xu, ShengXi Li, YiChen Guo and Zulin Wang (School of Electronic and Information Engineering, Beihang University)
Paper link: https://arxiv.org/abs/2111.09503
Abstract: Blind visual quality assessment (BVQA) on 360° video plays a key role in optimizing immersive multimedia systems. When assessing the quality of 360° video, human tends to perceive its quality degradation from the viewport-based spatial distortion of each spherical frame to motion artifact across adjacent frames, ending with the video-level quality score, i.e., a progressive quality assessment paradigm. However, the existing BVQA approaches for 360° video neglect this paradigm. In this paper, we take into account the progressive paradigm of human perception towards spherical video quality, and thus propose a novel BVQA approach (namely ProVQA) for 360° video via progressively learning from pixels, frames and video. Corresponding to the progressive learning of pixels, frames and video, three sub-nets are designed in our ProVQA approach, i.e., the spherical perception aware quality prediction (SPAQ), motion perception aware quality prediction (MPAQ) and multi-frame temporal non-local (MFTN) sub-nets. The SPAQ sub-net first models the spatial quality degradation based on spherical perception mechanism of human. Then, by exploiting motion cues across adjacent frames, the MPAQ sub-net properly incorporates motion contextual information for quality assessment on 360° video. Finally, the MFTN sub-net aggregates multi-frame quality degradation to yield the final quality score, via exploring long-term quality correlation from multiple frames. The experiments validate that our approach significantly advances the state-of-the-art BVQA performance on 360° video over two datasets, the code of which has been public in \url{https://github.com/yanglixiaoshen/ProVQA.}
Note: Since this paper is under review, you can first ask for the paper from me to ease the implementation of this project but you have no rights to use this paper in any purpose. Unauthorized use of this article for all activities will be investigated for legal responsibility. Contact me for accessing my paper (Email: [email protected])

Preparation

Requriments

First, download the conda environment of ProVQA from ProVQA_dependency and install my conda enviroment <envs> in Linux sys (Ubuntu 18.04+); Then, activate <envs> by running the following command:

conda env create -f ProVQA_environment.yaml

Second, install all dependencies by running the following command:

pip install -r ProVQA_environment.txt

If the above installation don't work, you can download the environment file with .tar.gz format. Then, unzip the file into a directory (e.g., pro_env) in your home directiory and activate the environment every time before you run the code.

source activate /home/xxx/pro_env

Implementation

The architecture of the proposed ProVQA is shown in the following figure, which contains four novel modules, i.e., SPAQ, MPAQ, MFTN and AQR.

Dataset

We trained our ProVQA on the large-scale 360° VQA dataset VQA-ODV, which includes 540 impaired 360° videos deriving from 60 reference 360° videos under equi-rectangular projection (ERP) (Training set: 432-Testing set:108). Besides, we also evaluate the performance of our ProVQA over 144 distorted 360° videos in BIT360 dataset.

Training the ProVQA

Our network is implemented based on the PyTorch framework, and run on two NVIDIA Tesla V100 GPUs with 32G memory. The number of sampled frames is 6 and the batch size is 3 per GPU for each iteration. The training set of VQA-ODV dataset has been packed as an LMDB file ODV-VQA_Train, which is used in our approach.

First, to run the training code as follows,

CUDA_VISIBLE_DEVICES=0,1 python ./train.py -opt ./options/train/bvqa360_240hz.yaml

Note that all the settings of dataset, training implementation and network can be found in "bvqa360_240hz.yaml". You can modify the settings to satisfy your experimental environment, for example, the dataset path should be modified to be your sever path. For the final BVQA result, we choose the trained model at iter=26400, which can be download at saved_model. Moreover, the corresponding training state can be obtained at saved_optimized_state.

Testing the ProVQA

Download the saved_model and put it in your own experimental directory. Then, run the following code for evaluating the BVQA performance over the testing set ODV-VQA_TEST. Note that all the settings of testing set, testing implementation and results can be found in "test_bvqa360_OURs.yaml". You can modify the settings to satisfy your experimental environment.

CUDA_VISIBLE_DEVICES=0 python ./test.py -opt ./options/test/test_bvqa360_OURs.yaml

The test results of predicted quality scores of all test 360° Video frames can be found in All_frame_scores and latter you should run the following code to generate the final 108 scores corresponding to 108 test 360° Videos, which can be downloaded from predicted_DMOS.

python ./evaluate.py

Evaluate BVQA performance

We have evaluate the BVQA performance for 360° Videos by 5 general metrics: PLCC, SROCC, KROCC, RMSE and MAE. we employ a 4-order logistic function for fitting the predicted quality scores to their corresponding ground truth, such that the fitted scores have the same scale as the ground truth DMOS gt_dmos. Note that the fitting procedure are conducted on our and all compared approaches. Run the code bvqa360_metric in the following command :

./bvqa360_metric1.m

As such, you can get the final results of PLCC=0.9209, SROCC=0.9236, KROCC=0.7760, RMSE=4.6165 and MAE=3.1136. The following tables shows the comparison on BVQA performance between our and other 13 approaches, over VQA-ODV and BIT360 dataset.

Tips

(1) We have summarized the information about how to run the compared algorithms in details, which can be found in the file "compareAlgoPreparation.txt".
(2) The details about the pre-processing on the ODV-VQA dataset and BIT360 dataset can be found in the file "pre_process_dataset.py".

Citation

If this repository can offer you help in your research, please cite the paper:

@misc{yang2021blind,
      title={Blind VQA on 360{\deg} Video via Progressively Learning from Pixels, Frames and Video}, 
      author={Li Yang and Mai Xu and Shengxi Li and Yichen Guo and Zulin Wang},
      year={2021},
      eprint={2111.09503},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgement

  1. https://github.com/xinntao/EDVR
  2. https://github.com/AlexHex7/Non-local_pytorch
  3. https://github.com/ChiWeiHsiao/SphereNet-pytorch

Please enjoy it and best wishes. Plese contact with me if you have any questions about the ProVQA approach.

My email address is 13021041[at]buaa[dot]edu[dot]cn

Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone

Andrew Jesson 19 Jun 23, 2022
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations

AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations. Each modality’s augmentations are contained within its own sub-l

Facebook Research 4.6k Jan 09, 2023
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
Free like Freedom

This is all very much a work in progress! More to come! ( We're working on it though! Stay tuned!) Installation Open an Anaconda Prompt (in Windows, o

2.3k Jan 04, 2023
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
PromptDet: Expand Your Detector Vocabulary with Uncurated Images

PromptDet: Expand Your Detector Vocabulary with Uncurated Images Paper Website Introduction The goal of this work is to establish a scalable pipeline

103 Dec 20, 2022
Quantum-enhanced transformer neural network

Example of a Quantum-enhanced transformer neural network Get the code: git clone https://github.com/rdisipio/qtransformer.git cd qtransformer Create

Riccardo Di Sipio 61 Nov 08, 2022
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
Source code for the plant extraction workflow introduced in the paper “Agricultural Plant Cataloging and Establishment of a Data Framework from UAV-based Crop Images by Computer Vision”

Plant extraction workflow Source code for the plant extraction workflow introduced in the paper "Agricultural Plant Cataloging and Establishment of a

Maurice Günder 0 Apr 22, 2022
Creating Artificial Life with Reinforcement Learning

Although Evolutionary Algorithms have shown to result in interesting behavior, they focus on learning across generations whereas behavior could also be learned during ones lifetime.

Maarten Grootendorst 49 Dec 21, 2022
Matthew Colbrook 1 Apr 08, 2022
Free course that takes you from zero to Reinforcement Learning PRO 🦸🏻‍🦸🏽

The Hands-on Reinforcement Learning course 🚀 From zero to HERO 🦸🏻‍🦸🏽 Out of intense complexities, intense simplicities emerge. -- Winston Churchi

Pau Labarta Bajo 260 Dec 28, 2022