Run object detection model on the Raspberry Pi

Overview

Intro

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

This is the guide for installing TensorFlow Lite on the Raspberry Pi and running pre-trained object detection models on it.

Step 1. Setting up Rasperry Pi

Upgrade Raspbian Stretch to Buster

(If you on Buster, skip this step and simply run sudo apt-get update and sudo apt-get dist-upgrade)

$ sudo apt-get update && sudo apt-get upgrade -y

Verify nothing is wrong. Verify no errors are reported after each command. Fix as required (you’re on your own here!).

$ dpkg -C
$ apt-mark showhold

Prepare apt-get Sources

Update the sources to apt-get. This replaces “stretch” with “buster” in the repository locations giving apt-get access to the new version’s binaries.

$ sudo sed -i 's/stretch/buster/g' /etc/apt/sources.list    
$ sudo sed -i 's/stretch/buster/g' /etc/apt/sources.list.d/raspi.list

Verify this caught them all by running the following, expecting no output. If the command returns anything having previously run the sed commands above, it means more files may need tweaking. Run the sed command for each. The aim is to replace all instances of “stretch”.

$ grep -lnr stretch /etc/apt

Speed up subsequent steps by removing the list change package.

$ sudo apt-get remove apt-listchanges

Do the Upgrade

To update existing packages without updating kernel modules or removing packages, run the following.

$ sudo apt-get update && sudo apt-get upgrade -y

Alternatively, to include kernel modules and removing packages if required, run the following

$ sudo apt-get update && sudo apt-get full-upgrade -y

Cleanup old outdated packages.

$ sudo apt-get autoremove -y && sudo apt-get autoclean

Verify with

 cat /etc/os-release.

Update Firmware

$ sudo rpi-update

and

sudo apt-get install -y python3-pip

and

pip3 install --upgrade setuptools

2. Making sure camera interface is enabled in the Raspberry Pi Configuration menu

Click the Pi icon in the top left corner of the screen, select Preferences -> Raspberry Pi Configuration, and go to the Interfaces tab and verify Camera is set to Enabled. If it isn't, enable it now, and reboot the Raspberry Pi.

Converting Tensorflow to Tensorflow Lite

Using TensorFlow Lite converter. It takes TensorFlow model and generates a TensorFlow Lite model (an optimized FlatBuffer format identified by the .tflite file extension).

Step 2. Install TF Lite dependecies and set up virtual environment

clone this repo

git clone https://github.com/yanovsk/Raspberry-Pi-TF-Lite-Object-Detection

rename the folder to "tfliteod"

mv Raspberry-Pi-TF-Lite-Object-Detection tfliteod
cd tfliteod

run shell script to install get_pi_requirements

bash get_pi_req.sh

Note: shell script will auto install the lastest version of Tensorflow. To install specific version of TF, run pip3 install tensorflow==x.xx (where x.xx stands for the version you want to install)

Set up virtual environment

Install vitrtualenv

pip3 install virtualenv 

Then, create the "tfliteod-env" virtual environment by issuing:

python3 -m venv tfliteod-env

This will create a folder called tfliteod-env inside the tflite1 directory. The tfliteod-env folder will hold all the package libraries for this environment. Next, activate the environment by issuing:

source tfliteod-env/bin/activate

Step 3. Set up TensorFlow Lite detection model

Once, tensorflow is install we can proceed to seting up the object detection model.

We can use either pre-trained model or train it on our end. For the simplicity sake let's use pre-trained sample model by google

Download the sample model (also could be done thru direct link here)

wget https://storage.googleapis.com/download.tensorflow.org/models/tflite/coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip

upzip it

unzip coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip -d Sample_model

Step 4. Run the model

Note: the model should work on either Picamera module or any other webcam plugged in to the Raspberry Pi as a usb device.

From home/pi/tfliteod run the following command:

python3 TFL_object_detection.py --modeldir=Sample_model

After initializing webcam window should pop-up on your Raspebbery Pi and object detection should work.

Note: this model can recongnize only 80 common objects (check labels.txt for more info on metadata)

However, you can custom train the model using this guide.

Happy hacking!

Owner
Dimitri Yanovsky
Dimitri Yanovsky
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022
Implementation of ViViT: A Video Vision Transformer

ViViT: A Video Vision Transformer Unofficial implementation of ViViT: A Video Vision Transformer. Notes: This is in WIP. Model 2 is implemented, Model

Rishikesh (ऋषिकेश) 297 Jan 06, 2023
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
Video Corpus Moment Retrieval with Contrastive Learning (SIGIR 2021)

Video Corpus Moment Retrieval with Contrastive Learning PyTorch implementation for the paper "Video Corpus Moment Retrieval with Contrastive Learning"

ZHANG HAO 42 Dec 29, 2022
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022
A simple, high level, easy-to-use open source Computer Vision library for Python.

ZoomVision : Slicing Aid Detection A simple, high level, easy-to-use open source Computer Vision library for Python. Installation Installing dependenc

Nurettin Sinanoğlu 2 Mar 04, 2022
Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint Louay Hazami   ·   Rayhane Mama   ·   Ragavan Thurairatn

Rayhane Mama 144 Dec 23, 2022
This is the official PyTorch implementation of our paper: "Artistic Style Transfer with Internal-external Learning and Contrastive Learning".

Artistic Style Transfer with Internal-external Learning and Contrastive Learning This is the official PyTorch implementation of our paper: "Artistic S

51 Dec 20, 2022
DeepVoxels is an object-specific, persistent 3D feature embedding.

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of

Vincent Sitzmann 196 Dec 25, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

BigData Lab @USTC 中科大大数据实验室 10 Oct 16, 2022
Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception, IROS 2021

For academic use only. Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception Ziwei Wang, Liyuan Pan, Yonhon Ng, Zheyu Zhuang and Robert Mahony Th

Ziwei Wang 11 Jan 04, 2023
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本和PARL(paddle)版本

用强化学习玩合成大西瓜 代码地址:https://github.com/Sharpiless/play-daxigua-using-Reinforcement-Learning 用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本、PARL(paddle)版本和pytorch版本

72 Dec 17, 2022
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023