This is the material used in my free Persian course: Machine Learning with Python

Overview

Machine_Learning_intro

:) سلام دوستان

This is the material used in my free Persian course: Machine Learning with Python (available on YouTube).

This 2 hours long course offers a practical introduction into Machine Learning with Python. this course is for you if you are familiar with data analytics libraries in Python (Pandas, NumPy, Matplotlib) and you are looking for a hands-on introduction to Machine Learning. After finishing this course, you will grasp the basic concepts in Machine Learning and be able to use its techniques on any data with Scikit-Learn, the most commonly used library for Machine Learning in Python.

Note

Oddly, the notebook cells are horizontally aligned when rendered on GitHub. I haven't found the solution to this problem unfortunately. However, they are correctly aligned when rendered on Jupyter, so I recommend downloading the notebook files and opening them with Jupyter or Colab or similar IDEs.


Topics covered:

Intro_to_ML_1:

  • 1:
    • What is Machine Learning?
    • Types of Machine Learning
    • Types of Supervised Learning
  • 2.1:
    • Types of Regression
    • Simple Linear Regression
  • 2.2:
    • Model Evaluation in Regression
    • Overfitting
    • Train/test split
    • Cross-Validation
    • Accuracy Metrics for Regression
    • Simple Linear Regression with Python
  • 2.3:
    • Multiple Linear Regression with Python
    • Polynomial Regression with Python
  • 2.4:
    • Regularization
    • Ridge Regression with Python
    • Lasso Regression with Python

Intro_to_ML_2:

  • 3.1:
    • Types of Classification
    • K-nearest neighbors (KNN)
  • 3.2:
    • Evaluation metrics in Classification
    • Confusion Matrix
    • KNN with Python
  • 3.3:
    • Decision Trees with Python
    • Logistic Regression with Python
    • Support Vector Machines (SVM) with Python
  • 3.4:
    • Neural Networks
    • Perceptron with Python
    • Multi-Layer Perceptron (MLP) with Python

Intro_to_ML_3:

  • 4:
    • Why reduce dimensionality?
    • Feature Selection with Python
    • Feature Extraction with Python

Contact

Feel free to email me your questions here: [email protected]

Material gathered, created, and taught by Yara Mohamadi.

Owner
Yara Mohamadi
Yara Mohamadi
Implemented four supervised learning Machine Learning algorithms

Implemented four supervised learning Machine Learning algorithms from an algorithmic family called Classification and Regression Trees (CARTs), details see README_Report.

Teng (Elijah) Xue 0 Jan 31, 2022
A data preprocessing and feature engineering script for a machine learning pipeline is prepared.

FEATURE ENGINEERING Business Problem: A data preprocessing and feature engineering script for a machine learning pipeline needs to be prepared. It is

Pinar Oner 7 Dec 18, 2021
AtsPy: Automated Time Series Models in Python (by @firmai)

Automated Time Series Models in Python (AtsPy) SSRN Report Easily develop state of the art time series models to forecast univariate data series. Simp

Derek Snow 465 Jan 02, 2023
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.7k Jan 04, 2023
slim-python is a package to learn customized scoring systems for decision-making problems.

slim-python is a package to learn customized scoring systems for decision-making problems. These are simple decision aids that let users make yes-no p

Berk Ustun 37 Nov 02, 2022
Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

FINRA 25 Dec 28, 2022
A machine learning model for Covid case prediction

CovidcasePrediction A machine learning model for Covid case prediction Problem Statement Using regression algorithms we can able to track the active c

VijayAadhithya2019rit 1 Feb 02, 2022
Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis.

Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis. It is distributed under the MIT License.

Jeong-Yoon Lee 720 Dec 25, 2022
Simple Machine Learning Tool Kit

Getting started smltk (Simple Machine Learning Tool Kit) package is implemented for helping your work during data preparation testing your model The g

Alessandra Bilardi 1 Dec 30, 2021
A collection of video resources for machine learning

Machine Learning Videos This is a collection of recorded talks at machine learning conferences, workshops, seminars, summer schools, and miscellaneous

Dustin Tran 1.5k Dec 29, 2022
Machine Learning from Scratch

Machine Learning from Scratch Author: Shengxuan Wang From: Oregon State University Content: Building Machine Learning model from Scratch, without usin

ShawnWang 0 Jul 05, 2022
MiniTorch - a diy teaching library for machine learning engineers

This repo is the full student code for minitorch. It is designed as a single repo that can be completed part by part following the guide book. It uses

1.1k Jan 07, 2023
A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching.

A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching. The solver will solve equations of the type: A can be

Sanjeet N. Dasharath 3 Feb 15, 2022
Python module for performing linear regression for data with measurement errors and intrinsic scatter

Linear regression for data with measurement errors and intrinsic scatter (BCES) Python module for performing robust linear regression on (X,Y) data po

Rodrigo Nemmen 56 Sep 27, 2022
MaD GUI is a basis for graphical annotation and computational analysis of time series data.

MaD GUI Machine Learning and Data Analytics Graphical User Interface MaD GUI is a basis for graphical annotation and computational analysis of time se

Machine Learning and Data Analytics Lab FAU 10 Dec 19, 2022
Made in collaboration with Chris George for Art + ML Spring 2019.

Deepdream Eyes Made in collaboration with Chris George for Art + ML Spring 2019.

Francisco Cabrera 1 Jan 12, 2022
A collection of neat and practical data science and machine learning projects

Data Science A collection of neat and practical data science and machine learning projects Explore the docs » Report Bug · Request Feature Table of Co

Will Fong 2 Dec 10, 2021
Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking and Jupyter notebook analysis.

sklearn-evaluation Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking, and Jupyter notebook analysis. Suppo

Eduardo Blancas 354 Dec 31, 2022
Basic Docker Compose for Machine Learning Purposes

Docker-compose for Machine Learning How to use: cd docker-ml-jupyterlab

Chris Chen 1 Oct 29, 2021
fMRIprep Pipeline To Machine Learning

fMRIprep Pipeline To Machine Learning(Demo) 所有配置均在config.py文件下定义 前置环境(lilab) 各个节点均安装docker,并有fmripre的镜像 可以使用conda中的base环境(相应的第三份包之后更新) 1. fmriprep scr

Alien 3 Mar 08, 2022