CondNet: Conditional Classifier for Scene Segmentation

Related tags

Deep LearningCondNet
Overview

CondNet: Conditional Classifier for Scene Segmentation

PWC

PWC

Introduction

The fully convolutional network (FCN) has achieved tremendous success in dense visual recognition tasks, such as scene segmentation. The last layer of FCN is typically a global classifier (1×1 convolution) to recognize each pixel to a semantic label. We empirically show that this global classifier, ignoring the intra-class distinction, may lead to sub-optimal results.

In this work, we present a conditional classifier to replace the traditional global classifier, where the kernels of the classifier are generated dynamically conditioned on the input. The main advantages of the new classifier consist of: (i) it attends on the intra-class distinction, leading to stronger dense recognition capability; (ii) the conditional classifier is simple and flexible to be integrated into almost arbitrary FCN architectures to improve the prediction. Extensive experiments demonstrate that the proposed classifier performs favourably against the traditional classifier on the FCN architecture. The framework equipped with the conditional classifier (called CondNet) achieves new state-of-the-art performances on two datasets.


Major Features

  • Simple and Flexible
  • Incorporated with almost arbitrary FCN architectures
  • Attending on the sample-specific distinction of each category

Results and Models

ADE20K

Method Backbone Crop Size Lr schd mIoU mIoU(ms+flip) config download
CondNet R-50-D8 512x512 160000 43.68 44.30 config model
CondNet R-101-D8 512x512 160000 45.64 47.12 config model

Pascal Context 59

Method Backbone Crop Size Lr schd mIoU mIoU(ms+flip) config download
CondNet R-101-D8 480x480 80000 54.29 55.74 config model

Environments

The code is developed using python 3.7 on Ubuntu 16.04. NVIDIA GPUs are needed. The code is developed and tested using 8 NVIDIA V100 GPU cards. Other platforms or GPU cards are not fully tested.

Quick Start

Prerequisites

  • Linux or macOS (Windows is in experimental support)
  • Python 3.6+
  • PyTorch 1.3+
  • CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
  • GCC 5+
  • MMCV
  • MMSegmentation

Please refer to the guide for the information about he compatible MMSegmentation and MMCV versions. Please install the correct version of MMCV to avoid installation issues.

Note: You need to run pip uninstall mmcv first if you have mmcv installed. If mmcv and mmcv-full are both installed, there will be ModuleNotFoundError.

Installation

a. Create a conda virtual environment and activate it.

conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab

b. Install PyTorch and torchvision following the official instructions. Here we use PyTorch 1.6.0 and CUDA 10.1. You may also switch to other version by specifying the version number.

conda install pytorch=1.6.0 torchvision cudatoolkit=10.1 -c pytorch

c. Install MMCV following the official instructions. Either mmcv or mmcv-full is compatible with MMSegmentation, but for methods like CCNet and PSANet, CUDA ops in mmcv-full is required.

The pre-build mmcv-full (with PyTorch 1.6 and CUDA 10.1) can be installed by running: (other available versions could be found here)

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.6.0/index.html

Or you should download the cl compiler from web and then set up the path.

Then, clone mmcv from github and install mmcv via pip:

git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
pip install -e .

Or simply:

pip install mmcv

d. Install build requirements

pip install -r requirements.txt

Prepare datasets

It is recommended to symlink the dataset root to $CONDNET/data. If your folder structure is different, you may need to change the corresponding paths in config files.

condnet
├── models
├── tools
├── configs
├── data
│   ├── VOCdevkit
│   │   ├── VOC2012
│   │   │   ├── JPEGImages
│   │   │   ├── SegmentationClass
│   │   │   ├── ImageSets
│   │   │   │   ├── Segmentation
│   │   ├── VOC2010
│   │   │   ├── JPEGImages
│   │   │   ├── SegmentationClassContext
│   │   │   ├── ImageSets
│   │   │   │   ├── SegmentationContext
│   │   │   │   │   ├── train.txt
│   │   │   │   │   ├── val.txt
│   │   │   ├── trainval_merged.json
│   │   ├── VOCaug
│   │   │   ├── dataset
│   │   │   │   ├── cls
│   ├── ade
│   │   ├── ADEChallengeData2016
│   │   │   ├── annotations
│   │   │   │   ├── training
│   │   │   │   ├── validation
│   │   │   ├── images
│   │   │   │   ├── training
│   │   │   │   ├── validation

ADE20K

The training and validation set of ADE20K could be download from this link. We may also download test set from here.

Pascal Context

The training and validation set of Pascal Context could be download from here. You may also download test set from here after registration.

To split the training and validation set from original dataset, you may download trainval_merged.json from here.

If you would like to use Pascal Context dataset, please install Detail and then run the following command to convert annotations into proper format.

python tools/convert_datasets/pascal_context.py data/VOCdevkit data/VOCdevkit/VOC2010/trainval_merged.json

More datasets please refer to MMSegmentation.

Training and Testing

All outputs (log files and checkpoints) will be saved to the working directory, which is specified by work_dir in the config file.

By default we evaluate the model on the validation set after some iterations, you can change the evaluation interval by adding the interval argument in the training config.

evaluation = dict(interval=4000)  # This evaluate the model per 4000 iterations.

*Important*: The default learning rate in config files is for 4 GPUs and 2 img/gpu (batch size = 4x2 = 8). Equivalently, you may also use 8 GPUs and 1 imgs/gpu since all models using cross-GPU SyncBN.

To trade speed with GPU memory, you may pass in --options model.backbone.with_cp=True to enable checkpoint in backbone.

Training

Train with a single GPU

python tools/train.py ${CONFIG_FILE} [optional arguments]

If you want to specify the working directory in the command, you can add an argument --work-dir ${YOUR_WORK_DIR}.

Train with multiple GPUs

./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]

Optional arguments are:

  • --no-validate (not suggested): By default, the codebase will perform evaluation at every k iterations during the training. To disable this behavior, use --no-validate.
  • --work-dir ${WORK_DIR}: Override the working directory specified in the config file.
  • --resume-from ${CHECKPOINT_FILE}: Resume from a previous checkpoint file (to continue the training process).
  • --load-from ${CHECKPOINT_FILE}: Load weights from a checkpoint file (to start finetuning for another task).

Difference between resume-from and load-from:

  • resume-from loads both the model weights and optimizer state including the iteration number.
  • load-from loads only the model weights, starts the training from iteration 0.

Launch multiple jobs on a single machine

If you launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs, you need to specify different ports (29500 by default) for each job to avoid communication conflict. Otherwise, there will be error message saying RuntimeError: Address already in use.

If you use dist_train.sh to launch training jobs, you can set the port in commands with environment variable PORT.

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh ${CONFIG_FILE} 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh ${CONFIG_FILE} 4

If you use slurm_train.sh to launch training jobs, you can set the port in commands with environment variable MASTER_PORT.

MASTER_PORT=29500 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE}
MASTER_PORT=29501 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE}

Testing

  • single GPU
  • single node multiple GPU

You can use the following commands to test a dataset.

# single-gpu testing
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] [--show]

# multi-gpu testing
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]

Optional arguments:

  • RESULT_FILE: Filename of the output results in pickle format. If not specified, the results will not be saved to a file. (After mmseg v0.17, the output results become pre-evaluation results or format result paths)
  • EVAL_METRICS: Items to be evaluated on the results. Allowed values depend on the dataset, e.g., mIoU is available for all dataset. Cityscapes could be evaluated by cityscapes as well as standard mIoU metrics.
  • --show: If specified, segmentation results will be plotted on the images and shown in a new window. It is only applicable to single GPU testing and used for debugging and visualization. Please make sure that GUI is available in your environment, otherwise you may encounter the error like cannot connect to X server.
  • --show-dir: If specified, segmentation results will be plotted on the images and saved to the specified directory. It is only applicable to single GPU testing and used for debugging and visualization. You do NOT need a GUI available in your environment for using this option.
  • --eval-options: Optional parameters for dataset.format_results and dataset.evaluate during evaluation. When efficient_test=True, it will save intermediate results to local files to save CPU memory. Make sure that you have enough local storage space (more than 20GB). (efficient_test argument does not have effect after mmseg v0.17, we use a progressive mode to evaluation and format results which can largely save memory cost and evaluation time.)

Examples:

Assume that you have already downloaded the checkpoints to the directory checkpoints/.

Test CondNet with 4 GPUs, and evaluate the standard mIoU metric.

```shell
./tools/dist_test.sh configs/condnet/condnet_r101-d8_512x512_160k_ade20k.py \
    checkpoints/condnet_r101-d8_512x512_160k_ade20k.pth \
    4 --out results.pkl --eval mIoU
```

Citation

If you find this project useful in your research, please consider cite:

@ARTICLE{Yucondnet21,
  author={Yu, Changqian and Shao, Yuanjie and Gao, Changxin and Sang, Nong},
  journal={IEEE Signal Processing Letters}, 
  title={CondNet: Conditional Classifier for Scene Segmentation}, 
  year={2021},
  volume={28},
  number={},
  pages={758-762},
  doi={10.1109/LSP.2021.3070472}}

Acknowledgement

Thanks to:

Owner
ycszen
ycszen
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

98 Aug 16, 2022
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
Matthew Colbrook 1 Apr 08, 2022
This repository holds the code for the paper "Deep Conditional Gaussian Mixture Model forConstrained Clustering".

Deep Conditional Gaussian Mixture Model for Constrained Clustering. This repository holds the code for the paper Deep Conditional Gaussian Mixture Mod

17 Oct 30, 2022
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
This code implements constituency parse tree aggregation

README This code implements constituency parse tree aggregation. Folder details code: This folder contains the code that implements constituency parse

Adithya Kulkarni 0 Oct 11, 2021
Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Pgn2Latex (WIP) A simple script to make pdf from pgn files and studies. It's sti

12 Jul 23, 2022
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration

Stanford Computational Imaging Lab 149 Dec 22, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
Fuzzing JavaScript Engines with Aspect-preserving Mutation

DIE Repository for "Fuzzing JavaScript Engines with Aspect-preserving Mutation" (in S&P'20). You can check the paper for technical details. Environmen

gts3.org (<a href=[email protected])"> 190 Dec 11, 2022
Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage

Keepsake Version control for machine learning. Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Goo

Replicate 1.6k Dec 29, 2022
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
Voice of Pajlada with model and weights.

Pajlada TTS Stripped down version of ForwardTacotron (https://github.com/as-ideas/ForwardTacotron) with pretrained weights for Pajlada's (https://gith

6 Sep 03, 2021
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022