Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Overview

Implementation for Iso-Points (CVPR 2021)

Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

paper | supplementary material | project page

Overview

Iso-points are well-distributed points which lie on the neural iso-surface, they are an explicit form of representation of the implicit surfaces. We propose using iso-points to augment the optimization of implicit neural surfaces. The implicit and explicit surface representations are coupled, i.e. the implicit model determines the locations and normals of iso-points, whereas the iso-points can be utilized to control the optimization of the implicit model.

The implementation of the key steps for iso-points extraction is in levelset_sampling.py and utils/point_processing.py. To demonstrate the utilisation of iso-points, we provide scripts for multiple applications and scenarios:

Demo

Installation

This code is built as an extension of out Differentiable Surface Splatting pytorch library (DSS), which depends on pytorch3d, torch_cluster. Currently we support up to pytorch 1.6.

git clone --recursive https://github.com/yifita/iso-points.git
cd iso-points

# conda environment and dependencies
# update conda
conda update -n base -c defaults conda
# install requirements
conda env create --name DSS -f environment.yml
conda activate DSS

# build additional dependencies of DSS
# FRNN - fixed radius nearest neighbors
cd external/FRNN/external
git submodule update --init --recursive
cd prefix_sum
python setup.py install
cd ../..
python setup.py install

# build batch-svd
cd ../torch-batch-svd
python setup.py install

# build DSS itself
cd ../..
python setup.py develop

prepare data

Download data

cd data
wget https://igl.ethz.ch/projects/iso-points/data.zip
unzip data.zip
rm data.zip

Including subset of masked DTU data (courtesy of Yariv et.al.), synthetic rendered multiview data, and masked furu stereo reconstruction of DTU dataset.

multiview reconstruction

sampling-with-iso-points

# train baseline implicit representation only using ray-tracing
python train_mvr.py configs/compressor_implicit.yml --exit-after 6000

# train with uniform iso-points
python train_mvr.py configs/compressor_uni.yml --exit-after 6000

# train with iso-points distributed according to loss value (hard example mining)
python train_mvr.py configs/compressor_uni_lossS.yml --exit-after 6000

sampling result

DTU-data

python train_mvr.py configs/dtu55_iso.yml

dtu mvr result

implicit surface to noisy point cloud

python test_dtu_points.py data/DTU_furu/scan122.ply --use_off_normal_loss -o exp/points_3d_outputs/scan122_ours

cite

Please cite us if you find the code useful!

@inproceedings{yifan2020isopoints,
      title={Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations},
      author={Wang Yifan and Shihao Wu and Cengiz Oztireli and Olga Sorkine-Hornung},
      year={2020},
      booktitle = {CVPR},
      year = {2020},
}

Acknowledgement

We would like to thank Viviane Yang for her help with the point2surf code. This work was supported in parts by Apple scholarship, SWISSHEART Failure Network (SHFN), and UKRI Future Leaders Fellowship [grant number MR/T043229/1]

Owner
Yifan Wang
PhD student @ ETH Zurich
Yifan Wang
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

Shikun Liu 128 Dec 30, 2022
This repository focus on Image Captioning & Video Captioning & Seq-to-Seq Learning & NLP

Awesome-Visual-Captioning Table of Contents ACL-2021 CVPR-2021 AAAI-2021 ACMMM-2020 NeurIPS-2020 ECCV-2020 CVPR-2020 ACL-2020 AAAI-2020 ACL-2019 NeurI

Ziqi Zhang 362 Jan 03, 2023
Visual Memorability for Robotic Interestingness via Unsupervised Online Learning (ECCV 2020 Oral and TRO)

Visual Interestingness Refer to the project description for more details. This code based on the following paper. Chen Wang, Yuheng Qiu, Wenshan Wang,

Chen Wang 36 Sep 08, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020

TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral) MM | ArXiv This repository implements the paper "Text-Guided Neural Image Inpainting" by L

LisaiZhang 75 Dec 22, 2022
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
[ACL-IJCNLP 2021] Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning

CLNER The code is for our ACL-IJCNLP 2021 paper: Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning CLNER is a

71 Dec 08, 2022
【ACMMM 2021】DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning

DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning (ACMMM 2021) Overview We release the code of the DSANet (Dynamic S

Wenhao Wu 46 Dec 27, 2022
the code for paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration"

EOW-Softmax This code is for the paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration". Accepted by ICCV21. Usage Commnd exa

Yezhen Wang 36 Dec 02, 2022
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022
Python scripts using the Mediapipe models for Halloween.

Mediapipe-Halloween-Examples Python scripts using the Mediapipe models for Halloween. WHY Mainly for fun. But this repository also includes useful exa

Ibai Gorordo 23 Jan 06, 2023
[ICCV2021] Official code for "Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition"

CTR-GCN This repo is the official implementation for Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition. The pap

Yuxin Chen 148 Dec 16, 2022
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
style mixing for animation face

An implementation of StyleGAN on Animation dataset. Install git clone https://github.com/MorvanZhou/anime-StyleGAN cd anime-StyleGAN pip install -r re

Morvan 46 Nov 30, 2022
An all-in-one application to visualize multiple different local path planning algorithms

Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)

Abdur Javaid 47 Dec 30, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
VGG16 model-based classification project about brain tumor detection.

Brain-Tumor-Classification-with-MRI VGG16 model-based classification project about brain tumor detection. First, you can check what people are doing o

Atakan Erdoğan 2 Mar 21, 2022
This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on table detection and table structure recognition.

WTW-Dataset This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on ICCV 2021. Here, you can download the

109 Dec 29, 2022