Learning Continuous Image Representation with Local Implicit Image Function

Overview

LIIF

This repository contains the official implementation for LIIF introduced in the following paper:

Learning Continuous Image Representation with Local Implicit Image Function

Yinbo Chen, Sifei Liu, Xiaolong Wang

The project page with video is at https://yinboc.github.io/liif/.

Citation

If you find our work useful in your research, please cite:

@article{chen2020learning,
  title={Learning Continuous Image Representation with Local Implicit Image Function},
  author={Chen, Yinbo and Liu, Sifei and Wang, Xiaolong},
  journal={arXiv preprint arXiv:2012.09161},
  year={2020}
}

Environment

  • Python 3
  • Pytorch 1.6.0
  • TensorboardX
  • yaml, numpy, tqdm, imageio

Quick Start

  1. Download a DIV2K pre-trained model.
Model File size Download
EDSR-baseline-LIIF 18M Dropbox | Google Drive
RDN-LIIF 256M Dropbox | Google Drive
  1. Convert your image to LIIF and present it in a given resolution (with GPU 0, [MODEL_PATH] denotes the .pth file)
python demo.py --input xxx.png --model [MODEL_PATH] --resolution [HEIGHT],[WIDTH] --output output.png --gpu 0

Reproducing Experiments

Data

mkdir load for putting the dataset folders.

  • DIV2K: mkdir and cd into load/div2k. Download HR images and bicubic validation LR images from DIV2K website (i.e. Train_HR, Valid_HR, Valid_LR_X2, Valid_LR_X3, Valid_LR_X4). unzip these files to get the image folders.

  • benchmark datasets: cd into load/. Download and tar -xf the benchmark datasets (provided by this repo), get a load/benchmark folder with sub-folders Set5/, Set14/, B100/, Urban100/.

  • celebAHQ: mkdir load/celebAHQ and cp scripts/resize.py load/celebAHQ/, then cd load/celebAHQ/. Download and unzip data1024x1024.zip from the Google Drive link (provided by this repo). Run python resize.py and get image folders 256/, 128/, 64/, 32/. Download the split.json.

Running the code

0. Preliminaries

  • For train_liif.py or test.py, use --gpu [GPU] to specify the GPUs (e.g. --gpu 0 or --gpu 0,1).

  • For train_liif.py, by default, the save folder is at save/_[CONFIG_NAME]. We can use --name to specify a name if needed.

  • For dataset args in configs, cache: in_memory denotes pre-loading into memory (may require large memory, e.g. ~40GB for DIV2K), cache: bin denotes creating binary files (in a sibling folder) for the first time, cache: none denotes direct loading. We can modify it according to the hardware resources before running the training scripts.

1. DIV2K experiments

Train: python train_liif.py --config configs/train-div2k/train_edsr-baseline-liif.yaml (with EDSR-baseline backbone, for RDN replace edsr-baseline with rdn). We use 1 GPU for training EDSR-baseline-LIIF and 4 GPUs for RDN-LIIF.

Test: bash scripts/test-div2k.sh [MODEL_PATH] [GPU] for div2k validation set, bash scripts/test-benchmark.sh [MODEL_PATH] [GPU] for benchmark datasets. [MODEL_PATH] is the path to a .pth file, we use epoch-last.pth in corresponding save folder.

2. celebAHQ experiments

Train: python train_liif.py --config configs/train-celebAHQ/[CONFIG_NAME].yaml.

Test: python test.py --config configs/test/test-celebAHQ-32-256.yaml --model [MODEL_PATH] (or test-celebAHQ-64-128.yaml for another task). We use epoch-best.pth in corresponding save folder.

Multi-Modal Machine Learning toolkit based on PaddlePaddle.

简体中文 | English PaddleMM 简介 飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 PaddleMM 初始版本 v1.0 特性 丰富的任务

njustkmg 520 Dec 28, 2022
[CVPR 2021] Exemplar-Based Open-Set Panoptic Segmentation Network (EOPSN)

EOPSN: Exemplar-Based Open-Set Panoptic Segmentation Network (CVPR 2021) PyTorch implementation for EOPSN. We propose open-set panoptic segmentation t

Jaedong Hwang 49 Dec 30, 2022
Keras community contributions

keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens

Keras 1.6k Dec 21, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

Alan Bi 576 Dec 29, 2022
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 02, 2022
D-NeRF: Neural Radiance Fields for Dynamic Scenes

D-NeRF: Neural Radiance Fields for Dynamic Scenes [Project] [Paper] D-NeRF is a method for synthesizing novel views, at an arbitrary point in time, of

Albert Pumarola 291 Jan 02, 2023
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

g-parki 7 Jul 15, 2022
SASM - simple crossplatform IDE for NASM, MASM, GAS and FASM assembly languages

SASM (SimpleASM) - простая кроссплатформенная среда разработки для языков ассемблера NASM, MASM, GAS, FASM с подсветкой синтаксиса и отладчиком. В SA

Dmitriy Manushin 5.6k Jan 06, 2023
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont

AI2 125 Dec 22, 2022
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi

18 Oct 20, 2022
Employs neural networks to classify images into four categories: ship, automobile, dog or frog

Neural Net Image Classifier Employs neural networks to classify images into four categories: ship, automobile, dog or frog Viterbi_1.py uses a classic

Riley Baker 1 Jan 18, 2022
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018

ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a

Hengshuang Zhao 594 Dec 31, 2022
PyTorch-based framework for Deep Hedging

PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien

139 Dec 30, 2022
Production First and Production Ready End-to-End Speech Recognition Toolkit

WeNet 中文版 Discussions | Docs | Papers | Runtime (x86) | Runtime (android) | Pretrained Models We share neural Net together. The main motivation of WeN

2.7k Jan 04, 2023
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) Introdu

anonymous 14 Oct 27, 2022
PySOT - SenseTime Research platform for single object tracking, implementing algorithms like SiamRPN and SiamMask.

PySOT is a software system designed by SenseTime Video Intelligence Research team. It implements state-of-the-art single object tracking algorit

STVIR 4.1k Dec 29, 2022
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021