Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip)

Overview

Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip)

Introduction

TL;DR: We propose an efficient and trainable local Lipscthiz bound for training certifibly robust neural networks.

Certified robustness is a desirable property for deep neural networks in safety-critical applications, and popular training algorithms can certify robustness of a neural network by computing a global bound on its Lipschitz constant. However, such a bound is often loose: it tends to over-regularize the neural network and degrade its natural accuracy. A tighter Lipschitz bound may provide a better tradeoff between natural and certified accuracy, but is generally hard to compute exactly due to non-convexity of the network. In this work, we propose an efficient and trainable \emph{local} Lipschitz upper bound by considering the interactions between activation functions (e.g. ReLU) and weight matrices. Specifically, when computing the induced norm of a weight matrix, we eliminate the corresponding rows and columns where the activation function is guaranteed to be a constant in the neighborhood of each given data point, which provides a provably tighter bound than the global Lipschitz constant of the neural network. Our method consistently outperforms state-of-the-art methods in both clean and certified accuracy on MNIST, CIFAR-10 and TinyImageNet datasets with various network architectures.

For more details please see our NeurIPS 2021 paper.

Contents

This directory includes the Pytorch implementation of Local-Lip, an efficient and trainable local Lipscthiz bound for training certifibly robust neural networks. Local_bound.py contains the the codes for computing the proposed local Lipschitz bound, and the codes for certifiable training and evaluation. train_cifar10.py and train_mnist.py contain the codes to train models on CIFAR-10 and MNIST. evaluate.py contains the codes to evaluate certified robustness. utils.py contains the codes of architectures and hyper-parameter specifications. data_load.py contains the codes of loading in the data. The pretrained models are in pretrained.

The codes for training models on TinyImagenet are in the TinyImagenet folder. We use distributed training to train on 4 GPUs for the TinyImagenet dataset. The codes are organized in the same way as the codes for CIFAR-10 and MNIST, but modified to accomodate for distributed training.

Requirements

The codes are tested under NVIDIA container image for PyTorch, release 20.11.

  • torch==3.6
  • torch==1.8.0
  • torchvision==0.8.0
  • advertorch==0.2.3
  • Apex (only needed for distributed training)

Usage

All the training scripts are in run_job.sh

For instance, to train a certifiably robust CIFAR-10 model using local Lipschitz bound, run: python train_cifar10.py --model c6f2_relux --sniter 2 --init 2.0 --end_lr 1e-6.

To run experiments on TinyImagenet, go to the TinyImagenet folder. To prepare the TinyImagenet dataset, execute TinyImagenet/data/tinyimagenet.sh, and the dataset will be saved in folder TinyImagenet/data/tiny-imagenet-200/.

Citation

If you find this useful for your work, please consider citing

@article{huang2021local,
  title={Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds},
  author={Huang, Yujia and Zhang, Huan and Shi, Yuanyuan and Kolter, J Zico and Anandkumar, Anima},
  journal={NeurIPS},
  year={2021}

}
Owner
PhD student at Caltech working on deep learning and neuroscience.
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
Repository accompanying the "Sign Pose-based Transformer for Word-level Sign Language Recognition" paper

by Matyáš Boháček and Marek Hrúz, University of West Bohemia Should you have any questions or inquiries, feel free to contact us here. Repository acco

Matyáš Boháček 30 Dec 30, 2022
Quantized tflite models for ailia TFLite Runtime

ailia-models-tflite Quantized tflite models for ailia TFLite Runtime About ailia TFLite Runtime ailia TF Lite Runtime is a TensorFlow Lite compatible

ax Inc. 13 Dec 23, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

Andrew Jong 97 Dec 13, 2022
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting 1. Classification Task PyTorch implementat

Yongho Kim 0 Apr 24, 2022
FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

0 Apr 02, 2021
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

Xinlong Wang 491 Jan 03, 2023
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
A visualisation tool for Deep Reinforcement Learning

DRLVIS - Visualising Deep Reinforcement Learning Created by Marios Sirtmatsis with the support of Alex Bäuerle. DRLVis is an application used for visu

Marios Sirtmatsis 1 Nov 04, 2021
Spectralformer: Rethinking hyperspectral image classification with transformers

Spectralformer: Rethinking hyperspectral image classification with transformers Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza

Danfeng Hong 102 Dec 29, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
DockStream: A Docking Wrapper to Enhance De Novo Molecular Design

DockStream Description DockStream is a docking wrapper providing access to a collection of ligand embedders and docking backends. Docking execution an

AstraZeneca - Molecular AI 72 Jan 02, 2023