Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation

Related tags

Deep Learningifcc
Overview

Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation

The reference code of Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation.

Implemented Models

Supported Radiology Report Datasets

Radiology NLI Dataset

The Radiology NLI dataset (RadNLI) is available at a corresponding PhysioNet project.

Prerequisites

  • A Linux OS (tested on Ubuntu 16.04)
  • Memory over 24GB
  • A gpu with memory over 12GB (tested on NVIDIA Titan X and NVIDIA Titan XP)

Preprocesses

Python Setup

Create a conda environment

$ conda env create -f environment.yml

NOTE : environment.yml is set up for CUDA 10.1 and cuDNN 7.6.3. This may need to be changed depending on a runtime environment.

Resize MIMIC-CXR-JPG

  1. Download MIMIC-CXR-JPG
  2. Make a resized copy of MIMIC-CXR-JPG using resize_mimic-cxr-jpg.py (MIMIC_CXR_ROOT is a dataset directory containing mimic-cxr)
    • $ python resize_mimic-cxr-jpg.py MIMIC_CXR_ROOT
  3. Create the sections file of MIMIC-CXR (mimic_cxr_sectioned.csv.gz) with create_sections_file.py
  4. Move mimic_cxr_sectioned.csv.gz to MIMIC_CXR_ROOT/mimic-cxr-resized/2.0.0/

Compute Document Frequencies

Pre-calculate document frequencies that will be used in CIDEr by:

$ python cider-df.py MIMIC_CXR_ROOT mimic-cxr_train-df.bin.gz

Recognize Named Entities

Pre-recognize named entities in MIMIC-CXR by:

$ python ner_reports.py --stanza-download MIMIC_CXR_ROOT mimic-cxr_ner.txt.gz

Download Pre-trained Weights

Download pre-trained CheXpert weights, pre-trained radiology NLI weights, and GloVe embeddings

$ cd resources
$ ./download.sh

Training a Report Generation Model

First, train the Meshed-Memory Transformer model with an NLL loss.

# NLL
$ python train.py --cuda --corpus mimic-cxr --cache-data cache --epochs 32 --batch-size 24 --entity-match mimic-cxr_ner.txt.gz --img-model densenet --img-pretrained resources/chexpert_auc14.dict.gz --cider-df mimic-cxr_train-df.bin.gz --bert-score distilbert-base-uncased --corpus mimic-cxr --lr-scheduler trans MIMIC_CXR_ROOT resources/glove_mimic-cxr_train.512.txt.gz out_m2trans_nll

Second, further train the model a joint loss using the self-critical RL to achieve a better performance.

# RL with NLL + BERTScore + EntityMatchExact
$ python train.py --cuda --corpus mimic-cxr --cache-data cache --epochs 32 --batch-size 24 --rl-epoch 1 --rl-metrics BERTScore,EntityMatchExact --rl-weights 0.01,0.495,0.495 --entity-match mimic-cxr_ner.txt.gz --baseline-model out_m2trans_nll/model_31-152173.dict.gz --img-model densenet --img-pretrained resources/chexpert_auc14.dict.gz --cider-df mimic-cxr_train-df.bin.gz --bert-score distilbert-base-uncased --lr 5e-6 --lr-step 32 MIMIC_CXR_ROOT resources/glove_mimic-cxr_train.512.txt.gz out_m2trans_nll-bs-emexact
# RL with NLL + BERTScore + EntityMatchNLI
$ python train.py --cuda --corpus mimic-cxr --cache-data cache --epochs 32 --batch-size 24 --rl-epoch 1 --rl-metrics BERTScore,EntityMatchNLI --rl-weights 0.01,0.495,0.495 --entity-match mimic-cxr_ner.txt.gz --baseline-model out_m2trans_nll/model_31-152173.dict.gz --img-model densenet --img-pretrained resources/chexpert_auc14.dict.gz --cider-df mimic-cxr_train-df.bin.gz --bert-score distilbert-base-uncased --lr 5e-6 --lr-step 32 MIMIC_CXR_ROOT resources/glove_mimic-cxr_train.512.txt.gz out_m2trans_nll-bs-emnli

Checking Result with TensorBoard

A training result can be checked with TensorBoard.

$ tensorboard --logdir out_m2trans_nll-bs-emnli/log
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
TensorBoard 2.0.0 at http://localhost:6006/ (Press CTRL+C to quit)

Evaluation using CheXbert

NOTE: This evaluation assumes that CheXbert is set up in ./CheXbert.

First, extract reference reports to a csv file.

$ python extract_reports.csv MIMIC_CXR_ROOT/mimic-cxr-resized/2.0.0/mimic_cxr_sectioned.csv.gz MIMIC_CXR_ROOT/mimic-cxr-resized/2.0.0/mimic-cxr-2.0.0-split.csv.gz mimic-imp
$ mv mimic-imp CheXbert/src/

Second, convert generated reports to a csv file. (TEST_SAMPLES is a path to test samples. e.g., out_m2trans_nll-bs-emnli/test_31-152173_samples.txt.gz)

$ python convert_generated.py TEST_SAMPLES gen.csv
$ mv gen.csv CheXbert/src/

Third, run CheXbert against the reference reports.

$ cd CheXbert/src/
$ python label.py -d mimic-imp/reports.csv -o mimic-imp -c chexbert.pth

Fourth, run eval_prf.py to obtain CheXbert scores.

$ cp ../../eval_prf.py . 
$ python eval_prf.py mimic-imp gen.csv gen_chex.csv
2947 references
2347 generated
...
5-micro x.xxx x.xxx x.xxx
5-acc x.xxx

Inferring from a Checkpoint

An inference from a checkpoint can be done with infer.py. (CHECKPOINT is a path to the checkpoint)

$ python infer.py --cuda --corpus mimic-cxr --cache-data cache --batch-size 24 --entity-match mimic-cxr_ner.txt.gz --img-model densenet --img-pretrained resources/chexpert_auc14.dict.gz --cider-df mimic-cxr_train-df.bin.gz --bert-score distilbert-base-uncased --corpus mimic-cxr --lr-scheduler trans MIMIC_CXR_ROOT CHECKPOINT resources/glove_mimic-cxr_train.512.txt.gz out_infer

Pre-trained checkpoints for M2 Transformer can be obtained with a download script.

$ cd checkpoints
$ ./download.sh

Licence

See LICENSE and clinicgen/external/LICENSE_bleu-cider-rouge-spice for details.

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 04, 2023
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

78 Dec 27, 2022
toroidal - a lightweight transformer library for PyTorch

toroidal - a lightweight transformer library for PyTorch Toroidal transformers are of smaller size and lower weight than the more common E-I types. Th

MathInf GmbH 64 Jan 07, 2023
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
Code for "Multi-Time Attention Networks for Irregularly Sampled Time Series", ICLR 2021.

Multi-Time Attention Networks (mTANs) This repository contains the PyTorch implementation for the paper Multi-Time Attention Networks for Irregularly

The Laboratory for Robust and Efficient Machine Learning 68 Dec 17, 2022
ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Ching-Yao Chuang 49 Nov 22, 2022
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
Pytorch implementation of ProjectedGAN

ProjectedGAN-pytorch Pytorch implementation of ProjectedGAN (https://arxiv.org/abs/2111.01007) Note: this repository is still under developement. @InP

Dominic Rampas 17 Dec 14, 2022
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 03, 2023
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
Beancount-mercury - Beancount importer for Mercury Startup Checking

beancount-mercury beancount-mercury provides an Importer for converting CSV expo

Michael Lynch 4 Oct 31, 2022
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition This repository contains code for the CVPR2021 paper "Patch-NetV

QVPR 368 Jan 06, 2023
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se

Intelligent Vision for Robotics in Complex Environment 10 Nov 07, 2022
U-Net Brain Tumor Segmentation

U-Net Brain Tumor Segmentation 🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is

Hao 448 Jan 02, 2023
A symbolic-model-guided fuzzer for TLS

tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "

69 Dec 20, 2022