Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

Overview

AHDRNet-PyTorch

Framework

1. Environment

  • Python >= 3.7
  • PyTorch >= 1.4.0
  • opencv-python = 4.5.1
  • imageio = 2.13.3
  • matplotlib

2. Dataset

The training data and testing data is from Kalantari (ACM TOG 2017), the dataset can be downloade from Kalantari Dataset.

3. Quick Demo (Only for tiff format 48-depth images (same with the Kalantari Dataset) now, others in progress)

  1. Clone this repository:
    git clone https://github.com/ytZhang99/AHDRNet-PyTorch.git
    
  2. Place the test image folders in ./data/Test/:
    Test
    └── test_data
        ├── Name_A
        |   ├── 1.tif
        |   ├── 2.tif
        |   ├── 3.tif
        |   ├── exposure.txt
        |   └── HDRImg.hdr (optional)
        └── Name_B
    
  3. Run the following command to test:
    python main.py --test_only
    
    The output images are placed in ./results/0_epoch/

4. Training

  1. Place the training image folders in ./data/Train/:
    Train
    └── train_data
        ├── Name_A
        |   ├── 1.tif
        |   ├── 2.tif
        |   ├── 3.tif
        |   ├── exposure.txt
        |   └── HDRImg.hdr
        └── Name_B
    
  2. Modify the main.sh file and run the following command to train:
    sh main.sh
    
    Notice that the default setting of this program is implementing validation on the test dataset after training, you can modify main.sh to close the validation progress.
  3. The trained model is saved in ./ckp/, then you can test your own model:
    python main.py --test_only --model latest.pth
    python main.py --test_only --model best_checkpoint.pth (This model is accessible with validation)
    
Owner
Yutong Zhang
Yutong Zhang
A Re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"

What is This This is a simple re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"(1). Only Sections

102 Dec 14, 2022
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes

Sungyong Baik 44 Dec 29, 2022
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
A model that attempts to learn and benefit from data collected on card counting.

A model that attempts to learn and benefit from data collected on card counting. A decision tree like model is built to win more often than loose and increase the bet of the player appropriately to c

1 Dec 17, 2021
This repo holds codes of the ICCV21 paper: Visual Alignment Constraint for Continuous Sign Language Recognition.

VAC_CSLR This repo holds codes of the paper: Visual Alignment Constraint for Continuous Sign Language Recognition.(ICCV 2021) [paper] Prerequisites Th

Yuecong Min 64 Dec 19, 2022
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in

Shengcai Liao 166 Dec 28, 2022
Least Square Calibration for Peer Reviews

Least Square Calibration for Peer Reviews Requirements gurobipy - for solving convex programs GPy - for Bayesian baseline numpy pandas To generate p

Sigma <a href=[email protected]"> 1 Nov 01, 2021
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Anshul Paigwar 114 Dec 29, 2022
Runtime type annotations for the shape, dtype etc. of PyTorch Tensors.

torchtyping Type annotations for a tensor's shape, dtype, names, ... Turn this: def batch_outer_product(x: torch.Tensor, y: torch.Tensor) - torch.Ten

Patrick Kidger 1.2k Jan 03, 2023
YOLOX + ROS(1, 2) object detection package

YOLOX + ROS(1, 2) object detection package

Ar-Ray 158 Dec 21, 2022
Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch

Lie Transformer - Pytorch (wip) Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch. Only the SE3 version will be present in thi

Phil Wang 78 Oct 26, 2022
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021
An open source machine learning library for performing regression tasks using RVM technique.

Introduction neonrvm is an open source machine learning library for performing regression tasks using RVM technique. It is written in C programming la

Siavash Eliasi 33 May 31, 2022
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022