This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

Overview

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization

This is the code for our paper ``SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'' (published in Bioinformatics'21) [link].

Install

git clone [email protected]:yueyu1030/SumGNN.git
cd SumGNN
pip install -r requirements.txt

Example

python train.py 
    -d drugbank         # task
    -e ddi_hop3         # the name for the log for experiments
    --gpu=0             # ID of GPU
    --hop=3             # size of the hops for subgraph
    --batch=256         # batch size for samples
    --emb_dim=32        # size of embedding for GNN layers
    -b=10               # size of basis for relation kernel

You can also change the d to BioSNAP. Please change the e accordingly. The trained model and the logs are stored in experiments folder. Note that to ensure a fair comparison, we test all models on the same negative triplets.

Dataset

We provide the dataset in the data folder.

Data Source Description
Drugbank This link A drug-drug interaction network betweeen 1,709 drugs with 136,351 interactions.
TWOSIDES This link A drug-drug interaction network betweeen 645 drugs with 46221 interactions.
Hetionet This link The knowledge graph containing 33,765 nodes out of 11 types (e.g., gene, disease, pathway,molecular function and etc.) with 1,690,693 edges from 23 relation types after preprocessing (To ensure no information leakage, we remove all the overlapping edges between HetioNet and the dataset).

Knowledge Graph Embedding

We train the knowledge graph embedding based on the framework in OpenKE.

To obtain the embedding on your own, you need to first feed the triples in train.txt (edges in dataset) and relations_2hop.txt (edges in KG) as edges into their toolkit and obtain the embeddings for each node. Then, you can incorporate this embedding into our framework by modifying the line 44-45 in model/dgl/rgcn_model.py.

Cite Us

Please kindly cite this paper if you find it useful for your research. Thanks!

@article{yu2021sumgnn,
  title={Sumgnn: Multi-typed drug interaction prediction via efficient knowledge graph summarization},
  author={Yu, Yue and Huang, Kexin and Zhang, Chao and Glass, Lucas M and Sun, Jimeng and Xiao, Cao},
  journal={Bioinformatics},
  year={2021}
}

Acknowledgement

The code framework is based on GraIL.

Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023
Analyzing basic network responses to novel classes

novelty-detection Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet. If you find

Noam Eshed 34 Oct 02, 2022
Blender scripts for computing geodesic distance

GeoDoodle Geodesic distance computation for Blender meshes Table of Contents Overivew Usage Implementation Overview This addon provides an operator fo

20 Jun 08, 2022
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023
A tool to visualise the results of AlphaFold2 and inspect the quality of structural predictions

AlphaFold Analyser This program produces high quality visualisations of predicted structures produced by AlphaFold. These visualisations allow the use

Oliver Powell 3 Nov 13, 2022
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
Optical Character Recognition + Instance Segmentation for russian and english languages

Распознавание рукописного текста в школьных тетрадях Соревнование, проводимое в рамках олимпиады НТО, разработанное Сбером. Платформа ODS. Результаты

Gerasimov Maxim 21 Dec 19, 2022
Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

GD-Thief Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includ

Antonio Piazza 39 Dec 27, 2022
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
This repository gives an example on how to preprocess the data of the HECKTOR challenge

HECKTOR 2021 challenge This repository gives an example on how to preprocess the data of the HECKTOR challenge. Any other preprocessing is welcomed an

56 Dec 01, 2022
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Code for the paper titled "Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks" (NeurIPS 2021 Spotlight).

Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks This repository contains the code and pre-trained

Hassan Dbouk 7 Dec 05, 2022
Official PyTorch Implementation for InfoSwap: Information Bottleneck Disentanglement for Identity Swapping

InfoSwap: Information Bottleneck Disentanglement for Identity Swapping Code usage Please check out the user manual page. Paper Gege Gao, Huaibo Huang,

Grace Hešeri 56 Dec 20, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
VGGVox models for Speaker Identification and Verification trained on the VoxCeleb (1 & 2) datasets

VGGVox models for speaker identification and verification This directory contains code to import and evaluate the speaker identification and verificat

338 Dec 27, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

Liming Jiang 238 Nov 25, 2022
FAVD: Featherweight Assisted Vulnerability Discovery

FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil

secureIT 4 Sep 16, 2022