Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Overview

Extrapolating from a Single Image to a Thousand Classes using Distillation

by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution)

Our-method

Extrapolating from one image. Strongly augmented patches from a single image are used to train a student (S) to distinguish semantic classes, such as those in ImageNet. The student neural network is initialized randomly and learns from a pretrained teacher (T) via KL-divergence. Although almost none of target categories are present in the image, we find student performances of > 59% for classifying ImageNet's 1000 classes. In this paper, we develop this single datum learning framework and investigate it across datasets and domains.

Key contributions

  • A minimal framework for training neural networks with a single datum from scratch using distillation.
  • Extensive ablations of the proposed method, such as the dependency on the source image, the choice of augmentations and network architectures.
  • Large scale empirical evidence of neural networks' ability to extrapolate on > 13 image, video and audio datasets.
  • Qualitative insights on what and how neural networks trained with a single image learn.

Neuron visualizations

Neurons

We compare activation-maximization-based visualizations using the Lucent library. Even though the model has never seen an image of a panda, the model trained with a teacher and only single-image inputs has a good idea of how a panda looks like.

Running the experiments

Installation

In each folder cifar\in1k\video you will find a requirements.txt file. Install packages as follows:

pip3 install -r requirements.txt

1. Prepare Dataset:

To generate single image data, we refer to the data_generation folder

2. Run Experiments:

There is a main "distill.py" file for each experiment type: small-scale and large-scale images and video. Note: 2a uses tensorflow and 2b, 2c use pytorch.

2a. Run distillation experiments for CIFAR-10/100

e.g. with Animal single-image dataset as follows:

# in cifar folder:
python3 distill.py --dataset=cifar10 --image=/path/to/single_image_dataset/ \
                   --student=wrn_16_4 --teacher=wrn_40_4 

Note that we provide a pretrained teacher model for reproducibility.

2b. Run distillation experiments for ImageNet with single-image dataset as follows:

# in in1k folder:
python3 distill.py --dataset=in1k --testdir /ILSVRC12/val/ \
                   --traindir=/path/to/dataset/ --student_arch=resnet50 --teacher_arch=resnet18 

Note that teacher models are automatically downloaded from torchvision or timm.

2c. Run distillation experiments for Kinetics with single-image-created video dataset as follows:

# in video folder:
python3 distill.py --dataset=k400 --traindir=/dataset/with/vids --test_data_path /path/to/k400/val 

Note that teacher models are automatically downloaded from torchvideo when you distill a K400 model.

Pretrained models

Large-scale (224x224-sized) image ResNet-50 models trained for 200ep:

Dataset Teacher Student Performance Checkpoint
ImageNet-12 R18 R50 59.1% R50 weights
ImageNet-12 R50 R50 53.5% R50 weights
Places365 R18 R50 54.7% R50 weights
Flowers101 R18 R50 58.1% R50 weights
Pets37 R18 R50 83.7% R50 weights
IN100 R18 R50 74.1% R50 weights
STL-10 R18 R50 93.0% R50 weights

Video x3d_s_e (expanded) models (160x160 crop, 4frames) trained for 400ep:

Dataset Teacher Student Performance Checkpoint
K400 x3d_xs x3d_xs_e 53.57% weights
UCF101 x3d_xs x3d_xs_e 77.32% weights

Citation

@inproceedings{asano2021extrapolating,
  title={Extrapolating from a Single Image to a Thousand Classes using Distillation},
  author={Asano, Yuki M. and Saeed, Aaqib},
  journal={arXiv preprint arXiv:2112.00725},
  year={2021}
}
Owner
Yuki M. Asano
I'm an Computer Vision researcher at the University of Amsterdam. Did my PhD at the Visual Geometry Group in Oxford.
Yuki M. Asano
Code of paper "Compositionally Generalizable 3D Structure Prediction"

Compositionally Generalizable 3D Structure Prediction In this work, We bring in the concept of compositional generalizability and factorizes the 3D sh

Songfang Han 30 Dec 17, 2022
OptaPlanner wrappers for Python. Currently significantly slower than OptaPlanner in Java or Kotlin.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 211 Jan 02, 2023
On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition

On the Analysis of French Phonetic Idiosyncrasies for Accent Recognition With the spirit of reproducible research, this repository contains codes requ

0 Feb 24, 2022
TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet

Keras implementation of PSPNet(caffe) Implemented Architecture of Pyramid Scene Parsing Network in Keras. For the best compability please use Python3.

VladKry 386 Dec 29, 2022
Collection of generative models in Tensorflow

tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th

3.8k Dec 30, 2022
This repo tries to recognize faces in the dataset you created

YÜZ TANIMA SİSTEMİ Bu repo oluşturacağınız yüz verisetlerini tanımaya çalışan ma

Mehdi KOŞACA 2 Dec 30, 2021
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
A PyTorch implementation of DenseNet.

A PyTorch Implementation of DenseNet This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Conv

Brandon Amos 771 Dec 15, 2022
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
:fire: 2D and 3D Face alignment library build using pytorch

Face Recognition Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D an

Adrian Bulat 6k Dec 31, 2022
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

21 Oct 06, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
Banglore House Prediction Using Flask Server (Python)

Banglore House Prediction Using Flask Server (Python) 🌐 Links 🌐 📂 Repo In this repository, I've implemented a Machine Learning-based Bangalore Hous

Dhyan Shah 1 Jan 24, 2022
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
An implementation of the BADGE batch active learning algorithm.

Batch Active learning by Diverse Gradient Embeddings (BADGE) An implementation of the BADGE batch active learning algorithm. Details are provided in o

125 Dec 24, 2022