Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)

Overview

Residual Dense Network for Image Super-Resolution

This repository is for RDN introduced in the following paper

Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu, "Residual Dense Network for Image Super-Resolution", CVPR 2018 (spotlight), [arXiv] [[email protected]], [[email protected]]

Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu, "Residual Dense Network for Image Restoration", arXiv 2018, [arXiv]

The code is built on EDSR (Torch) and tested on Ubuntu 14.04 environment (Torch7, CUDA8.0, cuDNN5.1) with Titan X/1080Ti/Xp GPUs.

Other implementations: PyTorch_version has been implemented by Nguyễn Trần Toàn ([email protected]) and merged into EDSR_PyTorch. TensorFlow_version by hengchuan.

Contents

  1. Introduction
  2. Train
  3. Test
  4. Results
  5. Citation
  6. Acknowledgements

Introduction

A very deep convolutional neural network (CNN) has recently achieved great success for image super-resolution (SR) and offered hierarchical features as well. However, most deep CNN based SR models do not make full use of the hierarchical features from the original low-resolution (LR) images, thereby achieving relatively-low performance. In this paper, we propose a novel residual dense network (RDN) to address this problem in image SR. We fully exploit the hierarchical features from all the convolutional layers. Specifically, we propose residual dense block (RDB) to extract abundant local features via dense connected convolutional layers. RDB further allows direct connections from the state of preceding RDB to all the layers of current RDB, leading to a contiguous memory (CM) mechanism. Local feature fusion in RDB is then used to adaptively learn more effective features from preceding and current local features and stabilizes the training of wider network. After fully obtaining dense local features, we use global feature fusion to jointly and adaptively learn global hierarchical features in a holistic way. Experiments on benchmark datasets with different degradation models show that our RDN achieves favorable performance against state-of-the-art methods.

RDB Figure 1. Residual dense block (RDB) architecture. RDN Figure 2. The architecture of our proposed residual dense network (RDN).

Train

Prepare training data

  1. Download DIV2K training data (800 training + 100 validtion images) from DIV2K dataset or SNU_CVLab.

  2. Place all the HR images in 'Prepare_TrainData/DIV2K/DIV2K_HR'.

  3. Run 'Prepare_TrainData_HR_LR_BI/BD/DN.m' in matlab to generate LR images for BI, BD, and DN models respectively.

  4. Run 'th png_to_t7.lua' to convert each .png image to .t7 file in new folder 'DIV2K_decoded'.

  5. Specify the path of 'DIV2K_decoded' to '-datadir' in 'RDN_TrainCode/code/opts.lua'.

For more informaiton, please refer to EDSR(Torch).

Begin to train

  1. (optional) Download models for our paper and place them in '/RDN_TrainCode/experiment/model'.

    All the models can be downloaded from Dropbox or Baidu.

  2. Cd to 'RDN_TrainCode/code', run the following scripts to train models.

    You can use scripts in file 'TrainRDN_scripts' to train models for our paper.

    # BI, scale 2, 3, 4
    # BIX2F64D18C6G64P48, input=48x48, output=96x96
    th main.lua -scale 2 -netType RDN -nFeat 64 -nFeaSDB 64 -nDenseBlock 16 -nDenseConv 8 -growthRate 64 -patchSize 96 -dataset div2k -datatype t7  -DownKernel BI -splitBatch 4 -trainOnly true
    
    # BIX3F64D18C6G64P32, input=32x32, output=96x96, fine-tune on RDN_BIX2.t7
    th main.lua -scale 3 -netType resnet_cu -nFeat 64 -nFeaSDB 64 -nDenseBlock 16 -nDenseConv 8 -growthRate 64 -patchSize 96 -dataset div2k -datatype t7  -DownKernel BI -splitBatch 4 -trainOnly true  -preTrained ../experiment/model/RDN_BIX2.t7
    
    # BIX4F64D18C6G64P32, input=32x32, output=128x128, fine-tune on RDN_BIX2.t7
    th main.lua -scale 4 -nGPU 1 -netType resnet_cu -nFeat 64 -nFeaSDB 64 -nDenseBlock 16 -nDenseConv 8 -growthRate 64 -patchSize 128 -dataset div2k -datatype t7  -DownKernel BI -splitBatch 4 -trainOnly true -nEpochs 1000 -preTrained ../experiment/model/RDN_BIX2.t7 
    
    # BD, scale 3
    # BDX3F64D18C6G64P32, input=32x32, output=96x96, fine-tune on RDN_BIX3.t7
    th main.lua -scale 3 -nGPU 1 -netType resnet_cu -nFeat 64 -nFeaSDB 64 -nDenseBlock 16 -nDenseConv 8 -growthRate 64 -patchSize 96 -dataset div2k -datatype t7  -DownKernel BD -splitBatch 4 -trainOnly true -nEpochs 200 -preTrained ../experiment/model/RDN_BIX3.t7
    
    # DN, scale 3
    # DNX3F64D18C6G64P32, input=32x32, output=96x96, fine-tune on RDN_BIX3.t7
    th main.lua -scale 3 -nGPU 1 -netType resnet_cu -nFeat 64 -nFeaSDB 64 -nDenseBlock 16 -nDenseConv 8 -growthRate 64 -patchSize 96 -dataset div2k -datatype t7  -DownKernel DN -splitBatch 4 -trainOnly true  -nEpochs 200 -preTrained ../experiment/model/RDN_BIX3.t7

    Only RDN_BIX2.t7 was trained using 48x48 input patches. All other models were trained using 32x32 input patches in order to save training time. However, smaller input patch size in training would lower the performance to some degree. We also set '-trainOnly true' to save GPU memory.

Test

Quick start

  1. Download models for our paper and place them in '/RDN_TestCode/model'.

    All the models can be downloaded from Dropbox or Baidu.

  2. Run 'TestRDN.lua'

    You can use scripts in file 'TestRDN_scripts' to produce results for our paper.

    # No self-ensemble: RDN
    # BI degradation model, X2, X3, X4
    th TestRDN.lua -model RDN_BIX2 -degradation BI -scale 2 -selfEnsemble false -dataset Set5
    th TestRDN.lua -model RDN_BIX3 -degradation BI -scale 3 -selfEnsemble false -dataset Set5
    th TestRDN.lua -model RDN_BIX4 -degradation BI -scale 4 -selfEnsemble false -dataset Set5
    # BD degradation model, X3
    th TestRDN.lua -model RDN_BDX3 -degradation BD -scale 3 -selfEnsemble false -dataset Set5
    # DN degradation model, X3
    th TestRDN.lua -model RDN_DNX3 -degradation DN -scale 3 -selfEnsemble false -dataset Set5
    
    
    # With self-ensemble: RDN+
    # BI degradation model, X2, X3, X4
    th TestRDN.lua -model RDN_BIX2 -degradation BI -scale 2 -selfEnsemble true -dataset Set5
    th TestRDN.lua -model RDN_BIX3 -degradation BI -scale 3 -selfEnsemble true -dataset Set5
    th TestRDN.lua -model RDN_BIX4 -degradation BI -scale 4 -selfEnsemble true -dataset Set5
    # BD degradation model, X3
    th TestRDN.lua -model RDN_BDX3 -degradation BD -scale 3 -selfEnsemble true -dataset Set5
    # DN degradation model, X3
    th TestRDN.lua -model RDN_DNX3 -degradation DN -scale 3 -selfEnsemble true -dataset Set5

The whole test pipeline

  1. Prepare test data.

    Place the original test sets (e.g., Set5, other test sets are available from GoogleDrive or Baidu) in 'OriginalTestData'.

    Run 'Prepare_TestData_HR_LR.m' in Matlab to generate HR/LR images with different degradation models.

  2. Conduct image SR.

    See Quick start

  3. Evaluate the results.

    Run 'Evaluate_PSNR_SSIM.m' to obtain PSNR/SSIM values for paper.

Results

PSNR_SSIM_BI Table 1. Benchmark results with BI degradation model. Average PSNR/SSIM values for scaling factor ×2, ×3, and ×4.

PSNR_SSIM_BD_DN Table 2. Benchmark results with BD and DN degradation models. Average PSNR/SSIM values for scaling factor ×3.

Citation

If you find the code helpful in your resarch or work, please cite the following papers.

@InProceedings{Lim_2017_CVPR_Workshops,
  author = {Lim, Bee and Son, Sanghyun and Kim, Heewon and Nah, Seungjun and Lee, Kyoung Mu},
  title = {Enhanced Deep Residual Networks for Single Image Super-Resolution},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
  month = {July},
  year = {2017}
}

@inproceedings{zhang2018residual,
    title={Residual Dense Network for Image Super-Resolution},
    author={Zhang, Yulun and Tian, Yapeng and Kong, Yu and Zhong, Bineng and Fu, Yun},
    booktitle={CVPR},
    year={2018}
}

@article{zhang2020rdnir,
    title={Residual Dense Network for Image Restoration},
    author={Zhang, Yulun and Tian, Yapeng and Kong, Yu and Zhong, Bineng and Fu, Yun},
    journal={TPAMI},
    year={2020}
}

Acknowledgements

This code is built on EDSR (Torch). We thank the authors for sharing their codes of EDSR Torch version and PyTorch version.

Owner
Yulun Zhang
Yulun Zhang
Python Library for Signal/Image Data Analysis with Transport Methods

PyTransKit Python Transport Based Signal Processing Toolkit Website and documentation: https://pytranskit.readthedocs.io/ Installation The library cou

24 Dec 23, 2022
Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

40 Dec 30, 2022
MQBench: Towards Reproducible and Deployable Model Quantization Benchmark

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark We propose a benchmark to evaluate different quantization algorithms on vari

494 Dec 29, 2022
Fluency ENhanced Sentence-bert Evaluation (FENSE), metric for audio caption evaluation. And Benchmark dataset AudioCaps-Eval, Clotho-Eval.

FENSE The metric, Fluency ENhanced Sentence-bert Evaluation (FENSE), for audio caption evaluation, proposed in the paper "Can Audio Captions Be Evalua

Zhiling Zhang 13 Dec 23, 2022
MPViT:Multi-Path Vision Transformer for Dense Prediction

MPViT : Multi-Path Vision Transformer for Dense Prediction This repository inlcu

Youngwan Lee 272 Dec 20, 2022
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Facebook Research 366 Dec 28, 2022
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
Making Structure-from-Motion (COLMAP) more robust to symmetries and duplicated structures

SfM disambiguation with COLMAP About Structure-from-Motion generally fails when the scene exhibits symmetries and duplicated structures. In this repos

Computer Vision and Geometry Lab 193 Dec 26, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
PyTorch implementation of: Michieli U. and Zanuttigh P., "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations", CVPR 2021.

Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations This is the official PyTorch implementation

Multimedia Technology and Telecommunication Lab 42 Nov 09, 2022
Masked regression code - Masked Regression

Masked Regression MR - Python Implementation This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize

Arbish Akram 1 Dec 23, 2021
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Daniil Gavrilov 347 Nov 14, 2022
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
A CNN implementation using only numpy. Supports multidimensional images, stride, etc.

A CNN implementation using only numpy. Supports multidimensional images, stride, etc. Speed up due to heavy use of slicing and mathematical simplification..

2 Nov 30, 2021
HiFi++: a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement

HiFi++ : a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement This is the unofficial implementation of Vocoder part of

Rishikesh (ऋषिकेश) 118 Dec 29, 2022
👨‍💻 run nanosaur in simulation with Gazebo/Ingnition

🦕 👨‍💻 nanosaur_gazebo nanosaur The smallest NVIDIA Jetson dinosaur robot, open-source, fully 3D printable, based on ROS2 & Isaac ROS. Designed & ma

nanosaur 9 Jul 19, 2022
Churn prediction

Churn-prediction Churn-prediction Data preprocessing:: Label encoder is used to normalize the categorical variable Data Transformation:: For each data

1 Sep 28, 2022
This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge column damage detection

Bridge-damage-segmentation This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge c

Jingxiao Liu 5 Dec 07, 2022
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

Pan Lu 81 Dec 27, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021