Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Overview

Talk-to-Edit (ICCV2021)

Python 3.7 pytorch 1.6.0

This repository contains the implementation of the following paper:

Talk-to-Edit: Fine-Grained Facial Editing via Dialog
Yuming Jiang, Ziqi Huang, Xingang Pan, Chen Change Loy, Ziwei Liu
IEEE International Conference on Computer Vision (ICCV), 2021

[Paper] [Project Page] [CelebA-Dialog Dataset]

Overview

overall_structure

Dependencies and Installation

  1. Clone Repo

    git clone [email protected]:yumingj/Talk-to-Edit.git
  2. Create Conda Environment and Install Dependencies

    conda env create -f environment.yml
    conda activate talk_edit
    • Python >= 3.7
    • PyTorch >= 1.6
    • CUDA 10.1
    • GCC 5.4.0

Get Started

Editing

We provide scripts for editing using our pretrained models.

  1. First, download the pretrained models from this link and put them under ./download/pretrained_models as follows:

    ./download/pretrained_models
    ├── 1024_field
    │   ├── Bangs.pth
    │   ├── Eyeglasses.pth
    │   ├── No_Beard.pth
    │   ├── Smiling.pth
    │   └── Young.pth
    ├── 128_field
    │   ├── Bangs.pth
    │   ├── Eyeglasses.pth
    │   ├── No_Beard.pth
    │   ├── Smiling.pth
    │   └── Young.pth
    ├── arcface_resnet18_110.pth
    ├── language_encoder.pth.tar
    ├── predictor_1024.pth.tar
    ├── predictor_128.pth.tar
    ├── stylegan2_1024.pth
    ├── stylegan2_128.pt
    ├── StyleGAN2_FFHQ1024_discriminator.pth
    └── eval_predictor.pth.tar
    
  2. You can try pure image editing without dialog instructions:

    python editing_wo_dialog.py \
       --opt ./configs/editing/editing_wo_dialog.yml \
       --attr 'Bangs' \
       --target_val 5

    The editing results will be saved in ./results.

    You can change attr to one of the following attributes: Bangs, Eyeglasses, Beard, Smiling, and Young(i.e. Age). And the target_val can be [0, 1, 2, 3, 4, 5].

  3. You can also try dialog-based editing, where you talk to the system through the command prompt:

    python editing_with_dialog.py --opt ./configs/editing/editing_with_dialog.yml

    The editing results will be saved in ./results.

    How to talk to the system:

    • Our system is able to edit five facial attributes: Bangs, Eyeglasses, Beard, Smiling, and Young(i.e. Age).
    • When prompted with "Enter your request (Press enter when you finish):", you can enter an editing request about one of the five attributes. For example, you can say "Make the bangs longer."
    • To respond to the system's feedback, just talk as if you were talking to a real person. For example, if the system asks "Is the length of the bangs just right?" after one round of editing, You can say things like "Yes." / "No." / "Yes, and I also want her to smile more happily.".
    • To end the conversation, just tell the system things like "That's all" / "Nothing else, thank you."
  4. By default, the above editing would be performed on the teaser image. You may change the image to be edited in two ways: 1) change line 11: latent_code_index to other values ranging from 0 to 99; 2) set line 10: latent_code_path to ~, so that an image would be randomly generated.

  5. If you want to try editing on real images, you may download the real images from this link and put them under ./download/real_images. You could also provide other real images at your choice. You need to change line 12: img_path in editing_with_dialog.yml or editing_wo_dialog.yml according to the path to the real image and set line 11: is_real_image as True.

  6. You can switch the default image size to 128 x 128 by setting line 3: img_res to 128 in config files.

Train the Semantic Field

  1. To train the Semantic Field, a number of sampled latent codes should be prepared and then we use the attribute predictor to predict the facial attributes for their corresponding images. The attribute predictor is trained using fine-grained annotations in CelebA-Dialog dataset. Here, we provide the latent codes we used. You can download the train data from this link and put them under ./download/train_data as follows:

    ./download/train_data
    ├── 1024
    │   ├── Bangs
    │   ├── Eyeglasses
    │   ├── No_Beard
    │   ├── Smiling
    │   └── Young
    └── 128
        ├── Bangs
        ├── Eyeglasses
        ├── No_Beard
        ├── Smiling
        └── Young
    
  2. We will also use some editing latent codes to monitor the training phase. You can download the editing latent code from this link and put them under ./download/editing_data as follows:

    ./download/editing_data
    ├── 1024
    │   ├── Bangs.npz.npy
    │   ├── Eyeglasses.npz.npy
    │   ├── No_Beard.npz.npy
    │   ├── Smiling.npz.npy
    │   └── Young.npz.npy
    └── 128
        ├── Bangs.npz.npy
        ├── Eyeglasses.npz.npy
        ├── No_Beard.npz.npy
        ├── Smiling.npz.npy
        └── Young.npz.npy
    
  3. All logging files in the training process, e.g., log message, checkpoints, and snapshots, will be saved to ./experiments and ./tb_logger directory.

  4. There are 10 configuration files under ./configs/train, named in the format of field_<IMAGE_RESOLUTION>_<ATTRIBUTE_NAME>. Choose the corresponding configuration file for the attribute and resolution you want.

  5. For example, to train the semantic field which edits the attribute Bangs in 128x128 image resolution, simply run:

    python train.py --opt ./configs/train/field_128_Bangs.yml

Quantitative Results

We provide codes for quantitative results shown in Table 1. Here we use Bangs in 128x128 resolution as an example.

  1. Use the trained semantic field to edit images.

    python editing_quantitative.py \
    --opt ./configs/train/field_128_bangs.yml \
    --pretrained_path ./download/pretrained_models/128_field/Bangs.pth
  2. Evaluate the edited images using quantitative metircs. Change image_num for different attribute accordingly: Bangs: 148, Eyeglasses: 82, Beard: 129, Smiling: 140, Young: 61.

    python quantitative_results.py \
    --attribute Bangs \
    --work_dir ./results/field_128_bangs \
    --image_dir ./results/field_128_bangs/visualization \
    --image_num 148

Qualitative Results

result

CelebA-Dialog Dataset

result

Our CelebA-Dialog Dataset is available at link.

CelebA-Dialog is a large-scale visual-language face dataset with the following features:

  • Facial images are annotated with rich fine-grained labels, which classify one attribute into multiple degrees according to its semantic meaning.
  • Accompanied with each image, there are captions describing the attributes and a user request sample.

result

The dataset can be employed as the training and test sets for the following computer vision tasks: fine-grained facial attribute recognition, fine-grained facial manipulation, text-based facial generation and manipulation, face image captioning, and broader natural language based facial recognition and manipulation tasks.

Citation

If you find our repo useful for your research, please consider citing our paper:

@InProceedings{jiang2021talkedit,
  author = {Jiang, Yuming and Huang, Ziqi and Pan, Xingang and Loy, Chen Change and Liu, Ziwei},
  title = {Talk-to-Edit: Fine-Grained Facial Editing via Dialog},
  booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision},
  year={2021}
}

Contact

If you have any question, please feel free to contact us via [email protected] or [email protected].

Acknowledgement

The codebase is maintained by Yuming Jiang and Ziqi Huang.

Part of the code is borrowed from stylegan2-pytorch, IEP and face-attribute-prediction.

Owner
Yuming Jiang
[email protected], Ph.D. Student
Yuming Jiang
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Thomas Winters 36 Nov 15, 2022
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite.

TFLite-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in Tensorflow Lite. Stereo depth estimati

Ibai Gorordo 4 Feb 14, 2022
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022
MLJetReconstruction - using machine learning to reconstruct jets for CMS

MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.

ALPhA Davidson 0 Nov 17, 2021
Official PyTorch implementation of StyleGAN3

Modified StyleGAN3 Repo Changes Made tied to python 3.7 syntax .jpgs instead of .pngs for training sample seeds to recreate the 1024 training grid wit

Derrick Schultz (he/him) 83 Dec 15, 2022
An Artificial Intelligence trying to drive a car by itself on a user created map

An Artificial Intelligence trying to drive a car by itself on a user created map

Akhil Sahukaru 17 Jan 13, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE: A Benchmark Suite for Data-centric NLP You can get the english version of README. 以数据为中心的AI测评(DataCLUE) 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE

CLUE benchmark 135 Dec 22, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
DNA-RECON { Automatic Web Reconnaissance Tool }

ABOUT TOOL : DNA-RECON is an automatic web reconnaissance tool written in python. This tool made for reconnaissance and information gathering with an

NIKUNJ BHATT 25 Aug 11, 2021
A self-supervised learning framework for audio-visual speech

AV-HuBERT (Audio-Visual Hidden Unit BERT) Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction Robust Self-Supervised A

Meta Research 431 Jan 07, 2023
Code for our paper 'Generalized Category Discovery'

Generalized Category Discovery This repo is a placeholder for code for our paper: Generalized Category Discovery Abstract: In this paper, we consider

107 Dec 28, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

98 Dec 15, 2022
DrQ-v2: Improved Data-Augmented Reinforcement Learning

DrQ-v2: Improved Data-Augmented RL Agent Method DrQ-v2 is a model-free off-policy algorithm for image-based continuous control. DrQ-v2 builds on DrQ,

Facebook Research 234 Jan 01, 2023
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
[SIGGRAPH Asia 2021] Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN

Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN [Paper] [Project Website] [Output resutls] Official Pytorch i

Badour AlBahar 215 Dec 17, 2022