Show-attend-and-tell - TensorFlow Implementation of "Show, Attend and Tell"

Overview

Show, Attend and Tell

Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attention which introduces an attention based image caption generator. The model changes its attention to the relevant part of the image while it generates each word.


alt text


References

Author's theano code: https://github.com/kelvinxu/arctic-captions

Another tensorflow implementation: https://github.com/jazzsaxmafia/show_attend_and_tell.tensorflow


Getting Started

Prerequisites

First, clone this repo and pycocoevalcap in same directory.

$ git clone https://github.com/yunjey/show-attend-and-tell-tensorflow.git
$ git clone https://github.com/tylin/coco-caption.git

This code is written in Python2.7 and requires TensorFlow 1.2. In addition, you need to install a few more packages to process MSCOCO data set. I have provided a script to download the MSCOCO image dataset and VGGNet19 model. Downloading the data may take several hours depending on the network speed. Run commands below then the images will be downloaded in image/ directory and VGGNet19 model will be downloaded in data/ directory.

$ cd show-attend-and-tell-tensorflow
$ pip install -r requirements.txt
$ chmod +x ./download.sh
$ ./download.sh

For feeding the image to the VGGNet, you should resize the MSCOCO image dataset to the fixed size of 224x224. Run command below then resized images will be stored in image/train2014_resized/ and image/val2014_resized/ directory.

$ python resize.py

Before training the model, you have to preprocess the MSCOCO caption dataset. To generate caption dataset and image feature vectors, run command below.

$ python prepro.py

Train the model

To train the image captioning model, run command below.

$ python train.py

(optional) Tensorboard visualization

I have provided a tensorboard visualization for real-time debugging. Open the new terminal, run command below and open http://localhost:6005/ into your web browser.

$ tensorboard --logdir='./log' --port=6005 

Evaluate the model

To generate captions, visualize attention weights and evaluate the model, please see evaluate_model.ipynb.


Results


Training data

(1) Generated caption: A plane flying in the sky with a landing gear down.

alt text

(2) Generated caption: A giraffe and two zebra standing in the field.

alt text

Validation data

(1) Generated caption: A large elephant standing in a dry grass field.

alt text

(2) Generated caption: A baby elephant standing on top of a dirt field.

alt text

Test data

(1) Generated caption: A plane flying over a body of water.

alt text

(2) Generated caption: A zebra standing in the grass near a tree.

alt text

Owner
Yunjey Choi
Yunjey Choi
Contains code for the paper "Vision Transformers are Robust Learners".

Vision Transformers are Robust Learners This repository contains the code for the paper Vision Transformers are Robust Learners by Sayak Paul* and Pin

Sayak Paul 103 Jan 05, 2023
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
Continuous Conditional Random Field Convolution for Point Cloud Segmentation

CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c

Fei Yang 8 Dec 08, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021)

3DDUNET This is the code for 3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021) Conference Paper Link Dataset We use SMOID dataset

1 Jan 07, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
Pytoydl: A toy deep learning framework built upon numpy.

Documents: https://pytoydl.readthedocs.io/zh/latest/ Pytoydl A toy deep learning framework built upon numpy. You can star this repository to keep trac

28 Dec 10, 2022
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.

Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models

AdvBox 1.3k Dec 25, 2022
chainladder - Property and Casualty Loss Reserving in Python

chainladder (python) chainladder - Property and Casualty Loss Reserving in Python This package gets inspiration from the popular R ChainLadder package

Casualty Actuarial Society 130 Dec 07, 2022
DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

OpenDILab 185 Dec 29, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022
Galileo library for large scale graph training by JD

近年来,图计算在搜索、推荐和风控等场景中获得显著的效果,但也面临超大规模异构图训练,与现有的深度学习框架Tensorflow和PyTorch结合等难题。 Galileo(伽利略)是一个图深度学习框架,具备超大规模、易使用、易扩展、高性能、双后端等优点,旨在解决超大规模图算法在工业级场景的落地难题,提

JD Galileo Team 128 Nov 29, 2022
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023
Learning to Draw: Emergent Communication through Sketching

Learning to Draw: Emergent Communication through Sketching This is the official code for the paper "Learning to Draw: Emergent Communication through S

19 Jul 22, 2022