An end-to-end machine learning library to directly optimize AUC loss

Overview

LibAUC

An end-to-end machine learning library for AUC optimization.

Why LibAUC?

Deep AUC Maximization (DAM) is a paradigm for learning a deep neural network by maximizing the AUC score of the model on a dataset. There are several benefits of maximizing AUC score over minimizing the standard losses, e.g., cross-entropy.

  • In many domains, AUC score is the default metric for evaluating and comparing different methods. Directly maximizing AUC score can potentially lead to the largest improvement in the model’s performance.
  • Many real-world datasets are usually imbalanced . AUC is more suitable for handling imbalanced data distribution since maximizing AUC aims to rank the predication score of any positive data higher than any negative data

Links

Installation

$ pip install libauc

Usage

Official Tutorials:

  • 01.Creating Imbalanced Benchmark Datasets [Notebook][Script]
  • 02.Training ResNet20 with Imbalanced CIFAR10 [Notebook][Script]
  • 03.Training with Pytorch Learning Rate Scheduling [Notebook][Script]
  • 04.Training with Imbalanced Datasets on Distributed Setting [Coming soon]

Quickstart for beginner:

>>> #import library
>>> from libauc.losses import AUCMLoss
>>> from libauc.optimizers import PESG
...
>>> #define loss
>>> Loss = AUCMLoss(imratio=0.1)
>>> optimizer = PESG(imratio=0.1)
...
>>> #training
>>> model.train()    
>>> for data, targets in trainloader:
>>>	data, targets  = data.cuda(), targets.cuda()
        preds = model(data)
        loss = Loss(preds, targets) 
        optimizer.zero_grad()
        loss.backward(retain_graph=True)
        optimizer.step()
...	
>>> #restart stage
>>> optimizer.update_regularizer()		
...   
>>> #evaluation
>>> model.eval()    
>>> for data, targets in testloader:
	data, targets  = data.cuda(), targets.cuda()
        preds = model(data)

Please visit our website or github for more examples.

Citation

If you find LibAUC useful in your work, please cite the following paper:

@article{yuan2020robust,
title={Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification},
author={Yuan, Zhuoning and Yan, Yan and Sonka, Milan and Yang, Tianbao},
journal={arXiv preprint arXiv:2012.03173},
year={2020}
}

Contact

If you have any questions, please contact us @ Zhuoning Yuan [[email protected]] and Tianbao Yang [[email protected]] or please open a new issue in the Github.

Comments
  • Only compatible with Nvidia GPU

    Only compatible with Nvidia GPU

    I tried running the example tutorial but I got the following error. ''' AssertionError: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx '''

    opened by Beckham45 2
  • Extend to Multi-class Classification Task and Be compatible with PyTorch scheduler

    Extend to Multi-class Classification Task and Be compatible with PyTorch scheduler

    Hi Zhuoning,

    This is an interesting work! I am wondering if the DAM method can be extended to a multi-class classification task with long-tailed imbalanced data. Intuitively, this should be possible as the famous sklearn tool provides auc score for multi-class setting by using one-versus-rest or one-versus-one technique.

    Besides, it seems that optimizer.update_regularizer() is called only when the learning rate is reduced, thus it would be more elegant to incorporate this functional call into a pytorch lr scheduler. E.g.,

    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
    scheduler.step()    # override the step to fulfill: optimizer.update_regularizer()
    
    

    For current libauc version, the PESG optimizer is not compatible with schedulers in torch.optim.lr_scheduler . It would be great if this feature can be supported in the future.

    Thanks for your work!

    opened by Cogito2012 2
  • When to use retain_graph=True?

    When to use retain_graph=True?

    Hi,

    When to use retain_graph=True in the loss backward function?

    In 2 examples (2 and 4), it is True. But not in the other examples.

    I appreciate your time.

    opened by dfrahman 1
  • Using AUCMLoss with imratio>1

    Using AUCMLoss with imratio>1

    I'm not very familiar with the maths in the paper so please forgive me if i'm asking something obvious.

    The AUCMLoss uses the "imbalance ratio" between positive and negative samples. The ratio is defined as

    the ratio of # of positive examples to the # of negative examples

    Or imratio=#pos/#neg

    When #pos<#neg, imratio is some value between 0 and 1. But when #pos>#neg, imratio>1

    Will this break the loss calculations? I have a feeling it would invalidate the many 1-self.p calculations in the LibAUC implementation, but as i'm not familiar with the maths I can't say for sure.

    Also, is there a problem (mathematically speaking) with calculating imratio=#pos/#total_samples, to avoid the problem above? When #pos<<#neg, #neg approximates #total_samples.

    opened by ayhyap 1
  • AUCMLoss does not use margin argument

    AUCMLoss does not use margin argument

    I noticed in the AUCMLoss class that the margin argument is not used. Following the formulation in the paper, the forward function should be changed in line 20 from 2*self.alpha*(self.p*(1-self.p) + \ to 2*self.alpha*(self.p*(1-self.p)*self.margin + \

    opened by ayhyap 1
  • How to train multi-label classification tasks? (like chexpert)

    How to train multi-label classification tasks? (like chexpert)

    I have started using this library and I've read your paper Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification, and I'm still not sure how to train a multi-label classification (MLC) model.

    Specifically, how did you fine-tune for the Chexpert multi-label classification task? (i.e. classify 5 diseases, where each image may have presence of 0, 1 or more diseases)

    • The first step pre-training with Cross-entropy loss seems clear to me
    • You mention: "In the second step of AUC maximization, we replace the last classifier layer trained in the first step by random weights and use our DAM method to optimize the last classifier layer and all previous layers.". The new classifier layer is a single or multi-label classifier?
    • In the Appendix I, figure 7 shows only one score as output for Deep AUC maximization (i.e. only one disease)
    • In the code, both AUCMLoss() and APLoss_SH() receive single-label outputs, not multi-label outputs, apparently

    How do you train for the 5 diseases? Train sequentially Cardiomegaly, then Edema, and so on? or with 5 losses added up? or something else?

    opened by pdpino 4
  • Example for tensorflow

    Example for tensorflow

    Thank you for the great library. Does it currently support tensorflow? If so, could you provide an example of how it can be used with tensorflow? Thank you very much

    opened by Kokkini 1
Releases(1.1.4)
  • 1.1.4(Jul 26, 2021)

    What's New

    • Added PyTorch dataloader for CheXpert dataset. Tutorial for training CheXpert is available here.
    • Added support for training AUC loss on CPU machines. Note that please remove lines with .cuda() from the code.
    • Fixed some bugs and improved the training stability
    Source code(tar.gz)
    Source code(zip)
  • 1.1.3(Jun 16, 2021)

  • 1.1.2(Jun 14, 2021)

    What's New

    1. Add SOAP optimizer contributed by @qiqi-helloworld @yzhuoning for optimizing AUPRC. Please check the tutorial here.
    2. Update ResNet18, ResNet34 with pretrained models on ImageNet1K
    3. Add new strategy for AUCM Loss: imratio is calculated over a mini-batch if initial value is not given
    4. Fixed some bugs and improved the training stability
    Source code(tar.gz)
    Source code(zip)
  • V1.1.0(May 10, 2021)

    What's New:

    • Fixed some bugs and improved the training stability
    • Changed default settings in loss function for binary labels to be 0 and 1
    • Added Pytorch dataloaders for CIFAR10, CIFAR100, CAT_vs_Dog, STL10
    • Enabled training DAM with Pytorch leanring scheduler, e.g., ReduceLROnPlateau, CosineAnnealingLR
    Source code(tar.gz)
    Source code(zip)
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
Predicting path with preference based on user demonstration using Maximum Entropy Deep Inverse Reinforcement Learning in a continuous environment

Preference-Planning-Deep-IRL Introduction Check my portfolio post Dependencies Gym stable-baselines3 PyTorch Usage Take Demonstration python3 record.

Tianyu Li 9 Oct 26, 2022
Improving Machine Translation Systems via Isotopic Replacement

CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu

Zeyu Sun 10 Nov 30, 2022
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
Oriented Response Networks, in CVPR 2017

Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation

ZhouYanzhao 217 Dec 12, 2022
BiSeNet based on pytorch

BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download

367 Dec 26, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

Kakao Brain 72 Dec 28, 2022
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Quasi-Recurrent Neural Network (QRNN) for PyTorch Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py ex

Salesforce 1.3k Dec 28, 2022
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
Reproduced Code for Image Forgery Detection papers.

Image Forgery Detection With over 4.5 billion active internet users, the amount of multimedia content being shared every day has surpassed everyone’s

Umar Masud 15 Dec 06, 2022
PyTorch Connectomics: segmentation toolbox for EM connectomics

Introduction The field of connectomics aims to reconstruct the wiring diagram of the brain by mapping the neural connections at the level of individua

Zudi Lin 132 Dec 26, 2022
Convolutional Neural Network to detect deforestation in the Amazon Rainforest

Convolutional Neural Network to detect deforestation in the Amazon Rainforest This project is part of my final work as an Aerospace Engineering studen

5 Feb 17, 2022