[CVPR2021] Invertible Image Signal Processing

Overview

Invertible Image Signal Processing

Python 3.6 pytorch 1.4.0

This repository includes official codes for "Invertible Image Signal Processing (CVPR2021)".

Figure: Our framework

Unprocessed RAW data is a highly valuable image format for image editing and computer vision. However, since the file size of RAW data is huge, most users can only get access to processed and compressed sRGB images. To bridge this gap, we design an Invertible Image Signal Processing (InvISP) pipeline, which not only enables rendering visually appealing sRGB images but also allows recovering nearly perfect RAW data. Due to our framework's inherent reversibility, we can reconstruct realistic RAW data instead of synthesizing RAW data from sRGB images, without any memory overhead. We also integrate a differentiable JPEG compression simulator that empowers our framework to reconstruct RAW data from JPEG images. Extensive quantitative and qualitative experiments on two DSLR demonstrate that our method obtains much higher quality in both rendered sRGB images and reconstructed RAW data than alternative methods.

Invertible Image Signal Processing
Yazhou Xing*, Zian Qian*, Qifeng Chen (* indicates joint first authors)
HKUST

[Paper] [Project Page] [Technical Video (Coming soon)]

Figure: Our results

Installation

Clone this repo.

git clone https://github.com/yzxing87/Invertible-ISP.git 
cd Invertible-ISP/

We have tested our code on Ubuntu 18.04 LTS with PyTorch 1.4.0, CUDA 10.1 and cudnn7.6.5. Please install dependencies by

conda env create -f environment.yml

Preparing datasets

We use MIT-Adobe FiveK Dataset for training and evaluation. To reproduce our results, you need to first download the NIKON D700 and Canon EOS 5D subsets from their website. The images (DNG) can be downloaded by

cd data/
bash data_preprocess.sh

The downloading may take a while. After downloading, we need to prepare the bilinearly demosaiced RAW and white balance parameters as network input, and ground truth sRGB (in JPEG format) as supervision.

python data_preprocess.py --camera="NIKON_D700"
python data_preprocess.py --camera="Canon_EOS_5D"

The dataset will be organized into

Path Size Files Format Description
data 585 GB 1 Main folder
├  Canon_EOS_5D 448 GB 1 Canon sub-folder
├  NIKON_D700 137 GB 1 NIKON sub-folder
    ├  DNG 2.9 GB 487 DNG In-the-wild RAW.
    ├  RAW 133 GB 487 NPZ Preprocessed RAW.
    ├  RGB 752 MB 487 JPG Ground-truth RGB.
├  NIKON_D700_train.txt 1 KB 1 TXT Training data split.
├  NIKON_D700_test.txt 5 KB 1 TXT Test data split.

Training networks

We specify the training arguments into train.sh. Simply run

cd ../
bash train.sh

The checkpoints will be saved into ./exps/{exp_name}/checkpoint/.

Test and evaluation

To reconstruct the RAW from JPEG RGB, we need to first save the rendered RGB into disk then do test to recover RAW. Original RAW images are too huge to be directly tested on one 2080 Ti GPU. We provide two ways to test the model.

  1. Subsampling the RAW for visualization purpose:
python test_rgb.py --task=EXPERIMENT_NAME \
                --data_path="./data/" \
                --gamma \
                --camera=CAMERA_NAME \
                --out_path=OUTPUT_PATH \
                --ckpt=CKPT_PATH

After finish, run

python test_raw.py --task=EXPERIMENT_NAME \
                --data_path="./data/" \
                --gamma \
                --camera=CAMERA_NAME \
                --out_path=OUTPUT_PATH \
                --ckpt=CKPT_PATH
  1. Spliting the RAW data into patches, for quantitatively evaluation purpose. Turn on the --split_to_patch argument. See test.sh. The PSNR and SSIM metrics can be obtained by
python cal_metrics.py --path=PATH_TO_SAVED_PATCHES

Citation

@inproceedings{xing21invertible,
  title     = {Invertible Image Signal Processing},
  author    = {Xing, Yazhou and Qian, Zian and Chen, Qifeng},
  booktitle = {CVPR},
  year      = {2021}
}

Acknowledgement

Part of the codes benefit from DiffJPEG and Invertible-Image-Rescaling.

Contact

Free feel to contact me if there is any question. (Yazhou Xing, [email protected])

Owner
Yazhou XING
Ph.D. Candidate at HKUST CSE
Yazhou XING
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
An image classification app boilerplate to serve your deep learning models asap!

Image 🖼 Classification App Boilerplate Have you been puzzled by tons of videos, blogs and other resources on the internet and don't know where and ho

Smaranjit Ghose 27 Oct 06, 2022
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
Pathdreamer: A World Model for Indoor Navigation

Pathdreamer: A World Model for Indoor Navigation This repository hosts the open source code for Pathdreamer, to be presented at ICCV 2021. Paper | Pro

Google Research 122 Jan 04, 2023
Protect against subdomain takeover

domain-protect scans Amazon Route53 across an AWS Organization for domain records vulnerable to takeover deploy to security audit account scan your en

OVO Technology 0 Nov 17, 2022
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Microsoft 5.7k Jan 09, 2023
Proto-RL: Reinforcement Learning with Prototypical Representations

Proto-RL: Reinforcement Learning with Prototypical Representations This is a PyTorch implementation of Proto-RL from Reinforcement Learning with Proto

Denis Yarats 74 Dec 06, 2022
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Pytorch for Segmentation

Pytorch for Semantic Segmentation This repo has been deprecated currently and I will not maintain it. Meanwhile, I strongly recommend you can refer to

ycszen 411 Nov 22, 2022
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
Vit-ImageClassification - Pytorch ViT for Image classification on the CIFAR10 dataset

Vit-ImageClassification Introduction This project uses ViT to perform image clas

Kaicheng Yang 4 Jun 01, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
A geometric deep learning pipeline for predicting protein interface contacts.

A geometric deep learning pipeline for predicting protein interface contacts.

44 Dec 30, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
HeartRate detector with ArduinoandPython - Use Arduino and Python create a heartrate detector.

Syllabus of Contents Syllabus of Contents Introduction Of Project Features Develop With Python code introduction Installation License Developer Contac

1 Jan 05, 2022