Create images and texts with the First Order Generative Adversarial Networks

Overview

First Order Divergence for training GANs

This repository contains code accompanying the paper First Order Generative Advesarial Netoworks

The majority of the code was copied from the repository https://github.com/bioinf-jku/TTUR

First Order Wasserstein Divergence GAN

The key added value of this code is its implementation two GANS that minimize not the KL-divergence or the WGAN-GP divergence, but the First Order Wasserstein Divergence, leading to better stability and perfomance.

Frechet Inception Distance (FID)

The FID is the performance measure used to evaluate the experiments in the paper. There, a detailed description can be found in the experiment section as well as in the the appendix in section A1.

In short: The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) and X_2 ~ N(mu_2, C_2) is

                   d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).

The FID is calculated by assuming that X_1 and X_2 are the activations of the pool_3 layer of the inception model (see below) for generated samples and real world samples respectivly.

Compatibility notice

Previous versions of this repository contained two implementations to calculate the FID, a "unbatched" and a "batched" version. The "unbatched" version should not be used anymore. If you've downloaded this code previously, please update it immediately to the new version. The old version included a bug!

Provided Code

Requirements: TF 1.1, Python 3.x, for faster JSD estimation in language model, compile the language model code.

fid.py

This file contains the implementation of all necessary functions to calculate the FID. It can be used either as a python module imported into your own code, or as a standalone script to calculate the FID between precalculated (training set) statistics and a directory full of images, or between two directories of images.

To compare directories with pre-calculated statistics (e.g. the ones from http://bioinf.jku.at/research/ttur/), use:

fid.py /path/to/images /path/to/precalculated_stats.npz

To compare two directories, use

fid.py /path/to/images /path/to/other_images

See fid.py --help for more details.

fid_example.py

Example code to show the usage of fid.py in your own Python scripts.

precalc_stats_example.py

Example code to show how to calculate and save training set statistics.

WGAN_GP

Improved WGAN (WGAN-GP) implementation forked from https://github.com/igul222/improved_wgan_training with added FID evaluation for the image model and switchable TTUR/orig settings. Lanuage model with JSD Tensorboard logging and switchable TTUR/orig settings.

Precalculated Statistics for FID calculation

Precalculated statistics for datasets

are provided at: http://bioinf.jku.at/research/ttur/

Additional Links

For FID evaluation download the Inception modelf from http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz

The cropped CelebA dataset can be downloaded here http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

To download the LSUN bedroom dataset go to: http://www.yf.io/p/lsun

The 64x64 downsampled ImageNet training and validation datasets can be found here http://image-net.org/small/download.php

Owner
Zalando Research
Repositories of the research branch of Zalando SE
Zalando Research
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022
OpenVINO黑客松比赛项目

Window_Guard OpenVINO黑客松比赛项目 英文名称:Window_Guard 中文名称:窗口卫士 硬件 树莓派4B 8G版本 一个磁石开关 USB摄像头(MP4视频文件也可以) 软件(库) OpenVINO RPi 使用方法 本项目使用的OPenVINO是是2021.3版本,并使用了

Tango 6 Jul 04, 2021
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip)

Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip) Introduction TL;DR: We propose an efficient and trainabl

17 Dec 01, 2022
The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021.

Personalized Trajectory Prediction via Distribution Discrimination (DisDis) The official PyTorch code implementation of "Personalized Trajectory Predi

25 Dec 20, 2022
PyTorch experiments with the Zalando fashion-mnist dataset

zalando-pytorch PyTorch experiments with the Zalando fashion-mnist dataset Project Organization ├── LICENSE ├── Makefile - Makefile with co

Federico Baldassarre 31 Sep 25, 2021
Measuring if attention is explanation with ROAR

NLP ROAR Interpretability Official code for: Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Toke

Andreas Madsen 19 Nov 13, 2022
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
Gated-Shape CNN for Semantic Segmentation (ICCV 2019)

GSCNN This is the official code for: Gated-SCNN: Gated Shape CNNs for Semantic Segmentation Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler

859 Dec 26, 2022
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
Computer Vision application in the web

Computer Vision application in the web Preview Usage Clone this repo git clone https://github.com/amineHY/WebApp-Computer-Vision-streamlit.git cd Web

Amine Hadj-Youcef. PhD 35 Dec 06, 2022
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models

tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener

Eunice Jun 11 Nov 15, 2022
Official Python implementation of the FuzionCoin protocol

PyFuzc Official Python implementation of the FuzionCoin protocol WARNING: Under construction. Use at your own risk. Some functions may not work. Setup

FuzionCoin 3 Jul 07, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.

ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too

e-Lab 344 Nov 21, 2022
A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population

DeepKE is a knowledge extraction toolkit supporting low-resource and document-level scenarios for entity, relation and attribute extraction. We provide comprehensive documents, Google Colab tutorials

ZJUNLP 1.6k Jan 05, 2023
A python library to build Model Trees with Linear Models at the leaves.

A python library to build Model Trees with Linear Models at the leaves.

Marco Cerliani 212 Dec 30, 2022
NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

3 Dec 18, 2021
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation

: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w

Yuval Nirkin 182 Dec 14, 2022
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022