Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Related tags

Deep LearningLPIGAC
Overview

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Code for our paper "Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training" (IEEE BIBM 2021)

Requirements

The code has been tested running under Python 3.7.4, with the following packages and their dependencies installed:

numpy==1.16.5
pytorch==1.3.1
sklearn==0.21.3

Usage

git clone https://github.com/zhanglabNKU/LPIGAC.git
cd LPIGAC
python fivefoldcv.py

Options

We adopt an argument parser by package argparse in Python, and the options for running code are defined as follow:

parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False,
                    help='Disables CUDA training.')
parser.add_argument('--seed', type=int, default=1, help='Random seed.')
parser.add_argument('--epochs', type=int, default=300,
                    help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.01,
                    help='Learning rate.')
parser.add_argument('--weight_decay', type=float, default=1e-7,
                    help='Weight decay (L2 loss on parameters).')
parser.add_argument('--hidden', type=int, default=144,                    help='Dimension of representations')
parser.add_argument('--alpha', type=float, default=0.5,
                    help='Weight between lncRNA space and protein space')
parser.add_argument('--beta', type=float, default=1.0,
                    help='Hyperparameter beta')

args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()

Data

Files of data are listed as follow:

  • LncRNAName.txt includes the names of all lncRNAs.
  • ProteinName.txt includes the names of all proteins.
  • interaction.txt is a matrix Y that shows lncRNA-protein associations. Y[i,j]=1 if lncRNA i and protein j are known to be associated, otherwise 0.
  • protfeat.txt is the feature matrix of proteins.
  • rnafeat.txt is the feature matrix of lncRNAs.

Citation

@inproceedings{jin2021lpigac,
    author = {Jin, Chen and Shi, Zhuangwei and Zhang, Han and Yin, Yanbin},
    title = {Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training},
    year = {2021},
    booktitle = {IEEE International Conference on Bioinformatics and Biomedicine (BIBM)},
}
Owner
zhanglabNKU
Data Mining Lab. Prof. Han Zhang
zhanglabNKU
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 01, 2022
Adjust Decision Boundary for Class Imbalanced Learning

Adjusting Decision Boundary for Class Imbalanced Learning This repository is the official PyTorch implementation of WVN-RS, introduced in Adjusting De

Peyton Byungju Kim 16 Jan 04, 2023
Python code to generate art with Generative Adversarial Network

GAN_Canvas_Maker Generating Art using Generative Adversarial Network (GAN) Python code to generate art with Generative Adversarial Network: https://to

Jonny Banana 10 Aug 22, 2022
An Industrial Grade Federated Learning Framework

DOC | Quick Start | 中文 FATE (Federated AI Technology Enabler) is an open-source project initiated by Webank's AI Department to provide a secure comput

Federated AI Ecosystem 4.8k Jan 09, 2023
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se

International Business Machines 27 Jan 05, 2023
PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages

PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages Abstract NLP applications for code-mixed (CM) or mix-li

Mohsin Ali, Mohammed 1 Nov 12, 2021
Stock-history-display - something like a easy yearly review for your stock performance

Stock History Display Available on Heroku: https://stock-history-display.herokua

LiaoJJ 1 Jan 07, 2022
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

Jiezhang Cao 225 Nov 13, 2022
Continual reinforcement learning baselines: experiment specifications, implementation of existing methods, and common metrics. Easily extensible to new methods.

Continual Reinforcement Learning This repository provides a simple way to run continual reinforcement learning experiments in PyTorch, including evalu

55 Dec 24, 2022
Laplace Redux -- Effortless Bayesian Deep Learning

Laplace Redux - Effortless Bayesian Deep Learning This repository contains the code to run the experiments for the paper Laplace Redux - Effortless Ba

Runa Eschenhagen 28 Dec 07, 2022
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

E2FGVI (CVPR 2022) English | 简体中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo

Media Computing Group @ Nankai University 537 Jan 07, 2023
Implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

YOLOv4-large This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork. YOLOv4-CSP YOLOv4-tiny YOLOv4-

Kin-Yiu, Wong 2k Jan 02, 2023
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023
T2F: text to face generation using Deep Learning

⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN

Animesh Karnewar 533 Dec 22, 2022
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta

40 Dec 22, 2022
Simple object detection app with streamlit

object-detection-app Simple object detection app with streamlit. Upload an image and perform object detection. Adjust the confidence threshold to see

Robin Cole 68 Jan 02, 2023
banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services.

banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services. This library is developed by Bandit ML and ex-authors of Facebook's app

Bandit ML 51 Dec 22, 2022
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Vide

Jonas Wu 232 Dec 29, 2022