a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

Overview

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

1. Notes

This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" [https://arxiv.org/abs/2107.08430]
The repo is still under development

2. Environment

pytorch>=1.7.0, python>=3.6, Ubuntu/Windows, see more in 'requirements.txt'

cd /path/to/your/work
git clone https://github.com/zhangming8/yolox-pytorch.git
cd yolox-pytorch
download pre-train weights in Model Zoo to /path/to/your/work/weights

3. Object Detection

Model Zoo

All weights can be downloaded from GoogleDrive or BaiduDrive (code:bc72)

Model test size mAPval
0.5:0.95
mAPtest
0.5:0.95
Params
(M)
yolox-nano 416 25.4 25.7 0.91
yolox-tiny 416 33.1 33.2 5.06
yolox-s 640 39.3 39.6 9.0
yolox-m 640 46.2 46.4 25.3
yolox-l 640 49.5 50.0 54.2
yolox-x 640 50.5 51.1 99.1
yolox-x 800 51.2 51.9 99.1

mAP was reevaluated on COCO val2017 and test2017, and some results are slightly better than the official implement YOLOX. You can reproduce them by scripts in 'evaluate.sh'

Dataset

download COCO:
http://images.cocodataset.org/zips/train2017.zip
http://images.cocodataset.org/zips/val2017.zip
http://images.cocodataset.org/annotations/annotations_trainval2017.zip

unzip and put COCO dataset in following folders:
/path/to/dataset/annotations/instances_train2017.json
/path/to/dataset/annotations/instances_val2017.json
/path/to/dataset/images/train2017/*.jpg
/path/to/dataset/images/val2017/*.jpg

change opt.dataset_path = "/path/to/dataset" in 'config.py'

Train

See more example in 'train.sh'
a. Train from scratch:(backbone="CSPDarknet-s" means using yolox-s, and you can change it, eg: CSPDarknet-nano, tiny, s, m, l, x)
python train.py gpus='0' backbone="CSPDarknet-s" num_epochs=300 exp_id="coco_CSPDarknet-s_640x640" use_amp=True val_intervals=2 data_num_workers=6 batch_size=48

b. Finetune, download pre-trained weight on COCO and finetune on customer dataset:
python train.py gpus='0' backbone="CSPDarknet-s" num_epochs=300 exp_id="coco_CSPDarknet-s_640x640" use_amp=True val_intervals=2 data_num_workers=6 batch_size=48 load_model="../weights/yolox-s.pth"

c. Resume, you can use 'resume=True' when your training is accidentally stopped:
python train.py gpus='0' backbone="CSPDarknet-s" num_epochs=300 exp_id="coco_CSPDarknet-s_640x640" use_amp=True val_intervals=2 data_num_workers=6 batch_size=48 load_model="exp/coco_CSPDarknet-s_640x640/model_last.pth" resume=True

Some Tips:

a. You can also change params in 'train.sh'(these params will replace opt.xxx in config.py) and use 'nohup sh train.sh &' to train
b. Multi-gpu train: set opt.gpus = "3,5,6,7" in 'config.py' or set gpus="3,5,6,7" in 'train.sh'
c. If you want to close multi-size training, change opt.random_size = None in 'config.py' or set random_size=None in 'train.sh'
d. random_size = (14, 26) means: Randomly select an integer from interval (14,26) and multiply by 32 as the input size
e. Visualized log by tensorboard: 
    tensorboard --logdir exp/your_exp_id/logs_2021-08-xx-xx-xx and visit http://localhost:6006
   Your can also use the following shell scripts:
    (1) grep 'train epoch' exp/your_exp_id/logs_2021-08-xx-xx-xx/log.txt
    (2) grep 'val epoch' exp/your_exp_id/logs_2021-08-xx-xx-xx/log.txt

Evaluate

Module weights will be saved in './exp/your_exp_id/model_xx.pth'
change 'load_model'='weight/path/to/evaluate.pth' and backbone='backbone-type' in 'evaluate.sh'
sh evaluate.sh

Predict/Inference/Demo

a. Predict images, change img_dir and load_model
python predict.py gpus='0' backbone="CSPDarknet-s" vis_thresh=0.3 load_model="exp/coco_CSPDarknet-s_640x640/model_best.pth" img_dir='/path/to/dataset/images/val2017'

b. Predict video
python predict.py gpus='0' backbone="CSPDarknet-s" vis_thresh=0.3 load_model="exp/coco_CSPDarknet-s_640x640/model_best.pth" video_dir='/path/to/your/video.mp4'

You can also change params in 'predict.sh', and use 'sh predict.sh'

Train Customer Dataset(VOC format)

1. put your annotations(.xml) and images(.jpg) into:
    /path/to/voc_data/images/train2017/*.jpg  # train images
    /path/to/voc_data/images/train2017/*.xml  # train xml annotations
    /path/to/voc_data/images/val2017/*.jpg  # val images
    /path/to/voc_data/images/val2017/*.xml  # val xml annotations

2. change opt.label_name = ['your', 'dataset', 'label'] in 'config.py'
   change opt.dataset_path = '/path/to/voc_data' in 'config.py'

3. python tools/voc_to_coco.py
   Converted COCO format annotation will be saved into:
    /path/to/voc_data/annotations/instances_train2017.json
    /path/to/voc_data/annotations/instances_val2017.json

4. (Optional) you can visualize the converted annotations by:
    python tools/show_coco_anns.py
    Here is an analysis of the COCO annotation https://blog.csdn.net/u010397980/article/details/90341223?spm=1001.2014.3001.5501

5. run train.sh, evaluate.sh, predict.sh (are the same as COCO)

4. Multi/One-class Multi-object Tracking(MOT)

one-class/single-class MOT Dataset

DOING

Multi-class MOT Dataset

DOING

Train

DOING

Evaluate

DOING

Predict/Inference/Demo

DOING

5. Acknowledgement

https://github.com/Megvii-BaseDetection/YOLOX
https://github.com/PaddlePaddle/PaddleDetection
https://github.com/open-mmlab/mmdetection
https://github.com/xingyizhou/CenterNet
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
Framework for abstracting Amiga debuggers and access to AmigaOS libraries and devices.

Framework for abstracting Amiga debuggers. This project provides abstration to control an Amiga remotely using a debugger. The APIs are not yet stable

Roc Vallès 39 Nov 22, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

NLP From Scratch Without Large-Scale Pretraining This repository contains the code, pre-trained model checkpoints and curated datasets for our paper:

Xingcheng Yao 224 Dec 08, 2022
Multivariate Time Series Transformer, public version

Multivariate Time Series Transformer Framework This code corresponds to the paper: George Zerveas et al. A Transformer-based Framework for Multivariat

363 Jan 03, 2023
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

ETSformer - Pytorch Implementation of ETSformer, state of the art time-series Transformer, in Pytorch Install $ pip install etsformer-pytorch Usage im

Phil Wang 121 Dec 30, 2022
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

CoTuning Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning. [News] 2021/01/13 The COCO 70 dataset used in the paper is av

THUML @ Tsinghua University 35 Sep 23, 2022
Code for EMNLP2020 long paper: BERT-Attack: Adversarial Attack Against BERT Using BERT

BERT-ATTACK Code for our EMNLP2020 long paper: BERT-ATTACK: Adversarial Attack Against BERT Using BERT Dependencies Python 3.7 PyTorch 1.4.0 transform

Linyang Li 142 Jan 04, 2023
OverFeat is a Convolutional Network-based image classifier and feature extractor.

OverFeat OverFeat is a Convolutional Network-based image classifier and feature extractor. OverFeat was trained on the ImageNet dataset and participat

593 Dec 08, 2022
The project covers common metrics for super-resolution performance evaluation.

Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script

xmy 10 Aug 03, 2022
Virtual hand gesture mouse using a webcam

NonMouse 日本語のREADMEはこちら This is an application that allows you to use your hand itself as a mouse. The program uses a web camera to recognize your han

Yuki Takeyama 55 Jan 01, 2023