A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Overview

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks

This repository is the official PyTorch implementation of AAAI-21 paper Bag of Tricks for Long-Tailed Visual Recognition with Deep Convolutional Neural Networks, which provides practical and effective tricks used in long-tailed image classification.

Trick gallery: trick_gallery.md

  • The tricks will be constantly updated. If you have or need any long-tail related trick newly proposed, please to open an issue or pull requests. Make sure to attach the results in corresponding md files if you pull a request with a new trick.
  • For any problem, such as bugs, feel free to open an issue.

Paper collection of long-tailed visual recognition

Awesome-of-Long-Tailed-Recognition

Long-Tailed-Classification-Leaderboard

Development log

Trick gallery and combinations

Brief inroduction

We divided the long-tail realted tricks into four families: re-weighting, re-sampling, mixup training, and two-stage training. For more details of the above four trick families, see the original paper.

Detailed information :

  • Trick gallery:

    Tricks, corresponding results, experimental settings, and running commands are listed in trick_gallery.md.
  • Trick combinations:

    Combinations of different tricks, corresponding results, experimental settings, and running commands are listed in trick_combination.md.
  • These tricks and trick combinations, which provide the corresponding results in this repo, have been reorgnized and tested. We are trying our best to deal with the rest, which will be constantly updated.

Main requirements

torch >= 1.4.0
torchvision >= 0.5.0
tensorboardX >= 2.1
tensorflow >= 1.14.0 #convert long-tailed cifar datasets from tfrecords to jpgs
Python 3
apex
  • We provide the detailed requirements in requirements.txt. You can run pip install requirements.txt to create the same running environment as ours.
  • The apex is recommended to be installed for saving GPU memories:
pip install -U pip
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
  • If the apex is not installed, the Distributed training with DistributedDataParallel in our codes cannot be used.

Preparing the datasets

We provide three datasets in this repo: long-tailed CIFAR (CIFAR-LT), long-tailed ImageNet (ImageNet-LT), and iNaturalist 2018 (iNat18).

The detailed information of these datasets are shown as follows:

Datasets CIFAR-10-LT CIFAR-100-LT ImageNet-LT iNat18
Imbalance factor
100 50 100 50
Training images 12,406 13,996 10,847 12,608 11,5846 437,513
Classes 50 50 100 100 1,000 8,142
Max images 5,000 5,000 500 500 1,280 1,000
Min images 50 100 5 10 5 2
Imbalance factor 100 50 100 50 256 500
-  `Max images` and `Min images` represents the number of training images in the largest and smallest classes, respectively.

-  CIFAR-10-LT-100 means the long-tailed CIFAR-10 dataset with the imbalance factor $\beta = 100$.

-  Imbalance factor is defined as $\beta = \frac{\text{Max images}}{\text{Min images}}$.

  • Data format

The annotation of a dataset is a dict consisting of two field: annotations and num_classes. The field annotations is a list of dict with image_id, fpath, im_height, im_width and category_id.

Here is an example.

{
    'annotations': [
                    {
                        'image_id': 1,
                        'fpath': '/data/iNat18/images/train_val2018/Plantae/7477/3b60c9486db1d2ee875f11a669fbde4a.jpg',
                        'im_height': 600,
                        'im_width': 800,
                        'category_id': 7477
                    },
                    ...
                   ]
    'num_classes': 8142
}
  • CIFAR-LT

    There are two versions of CIFAR-LT.

    1. Cui et al., CVPR 2019 firstly proposed the CIFAR-LT. They provided the download link of CIFAR-LT, and also the codes to generate the data, which are in TensorFlow.

      You can follow the steps below to get this version of CIFAR-LT:

      1. Download the Cui's CIFAR-LT in GoogleDrive or Baidu Netdisk (password: 5rsq). Suppose you download the data and unzip them at path /downloaded/data/.
      2. Run tools/convert_from_tfrecords, and the converted CIFAR-LT and corresponding jsons will be generated at /downloaded/converted/.
    # Convert from the original format of CIFAR-LT
    python tools/convert_from_tfrecords.py  --input_path /downloaded/data/ --out_path /downloaded/converted/
    1. Cao et al., NeurIPS 2019 followed Cui et al., CVPR 2019's method to generate the CIFAR-LT randomly. They modify the CIFAR datasets provided by PyTorch as this file shows.
  • ImageNet-LT

    You can use the following steps to convert from the original images of ImageNet-LT.

    1. Download the original ILSVRC-2012. Suppose you have downloaded and reorgnized them at path /downloaded/ImageNet/, which should contain two sub-directories: /downloaded/ImageNet/train and /downloaded/ImageNet/val.
    2. Download the train/test splitting files (ImageNet_LT_train.txt and ImageNet_LT_test.txt) in GoogleDrive or Baidu Netdisk (password: cj0g). Suppose you have downloaded them at path /downloaded/ImageNet-LT/.
    3. Run tools/convert_from_ImageNet.py, and you will get two jsons: ImageNet_LT_train.json and ImageNet_LT_val.json.
    # Convert from the original format of ImageNet-LT
    python tools/convert_from_ImageNet.py --input_path /downloaded/ImageNet-LT/ --image_path /downloaed/ImageNet/ --output_path ./
  • iNat18

    You can use the following steps to convert from the original format of iNaturalist 2018.

    1. The images and annotations should be downloaded at iNaturalist 2018 firstly. Suppose you have downloaded them at path /downloaded/iNat18/.
    2. Run tools/convert_from_iNat.py, and use the generated iNat18_train.json and iNat18_val.json to train.
    # Convert from the original format of iNaturalist
    # See tools/convert_from_iNat.py for more details of args 
    python tools/convert_from_iNat.py --input_json_file /downloaded/iNat18/train2018.json --image_path /downloaded/iNat18/images --output_json_file ./iNat18_train.json
    
    python tools/convert_from_iNat.py --input_json_file /downloaded/iNat18/val2018.json --image_path /downloaded/iNat18/images --output_json_file ./iNat18_val.json 

Usage

In this repo:

  • The results of CIFAR-LT (ResNet-32) and ImageNet-LT (ResNet-10), which need only one GPU to train, are gotten by DataParallel training with apex.

  • The results of iNat18 (ResNet-50), which need more than one GPU to train, are gotten by DistributedDataParallel training with apex.

  • If more than one GPU is used, DistributedDataParallel training is efficient than DataParallel training, especially when the CPU calculation forces are limited.

Training

Parallel training with DataParallel

1, To train
# To train long-tailed CIFAR-10 with imbalanced ratio of 50. 
# `GPUs` are the GPUs you want to use, such as `0,4`.
bash data_parallel_train.sh configs/test/data_parallel.yaml GPUs

Distributed training with DistributedDataParallel

1, Change the NCCL_SOCKET_IFNAME in run_with_distributed_parallel.sh to [your own socket name]. 
export NCCL_SOCKET_IFNAME = [your own socket name]

2, To train
# To train long-tailed CIFAR-10 with imbalanced ratio of 50. 
# `GPUs` are the GPUs you want to use, such as `0,1,4`.
# `NUM_GPUs` are the number of GPUs you want to use. If you set `GPUs` to `0,1,4`, then `NUM_GPUs` should be `3`.
bash distributed_data_parallel_train.sh configs/test/distributed_data_parallel.yaml NUM_GPUs GPUs

Validation

You can get the validation accuracy and the corresponding confusion matrix after running the following commands.

See main/valid.py for more details.

1, Change the TEST.MODEL_FILE in the yaml to your own path of the trained model firstly.
2, To do validation
# `GPUs` are the GPUs you want to use, such as `0,1,4`.
python main/valid.py --cfg [Your yaml] --gpus GPUS

The comparison between the baseline results using our codes and the references [Cui, Kang]

  • We use Top-1 error rates as our evaluation metric.
  • From the results of two CIFAR-LT, we can see that the CIFAR-LT provided by Cao has much lower Top-1 error rates on CIFAR-10-LT, compared with the baseline results reported in his paper. So, in our experiments, we use the CIFAR-LT of Cui for fairness.
  • For the ImageNet-LT, we find that the color_jitter augmentation was not included in our experiments, which, however, is adopted by other methods. So, in this repo, we add the color_jitter augmentation on ImageNet-LT. The old baseline without color_jitter is 64.89, which is +1.15 points higher than the new baseline.
  • You can click the Baseline in the table below to see the experimental settings and corresponding running commands.
Datasets Cui et al., 2019 Cao et al., 2020 ImageNet-LT iNat18
CIFAR-10-LT CIFAR-100-LT CIFAR-10-LT CIFAR-100-LT
Imbalance factor Imbalance factor
100 50 100 50 100 50 100 50
Backbones ResNet-32 ResNet-32 ResNet-10 ResNet-50
Baselines using our codes
  1. CONFIG (from left to right):
    • configs/cui_cifar/baseline/{cifar10_im100.yaml, cifar10_im50.yaml, cifar100_im100.yaml, cifar100_im50.yaml}
    • configs/cao_cifar/baseline/{cifar10_im100.yaml, cifar10_im50.yaml, cifar100_im100.yaml, cifar100_im50.yaml}
    • configs/ImageNet_LT/imagenetlt_baseline.yaml
    • configs/iNat18/iNat18_baseline.yaml

  2. Running commands:
    • For CIFAR-LT and ImageNet-LT: bash data_parallel_train.sh CONFIG GPU
    • For iNat18: bash distributed_data_parallel_train.sh configs/iNat18/iNat18_baseline.yaml NUM_GPUs GPUs
30.12 24.81 61.76 57.65 28.05 23.55 62.27 56.22 63.74 40.55
Reference [Cui, Kang, Liu] 29.64 25.19 61.68 56.15 29.64 25.19 61.68 56.15 64.40 42.86

Citation

@inproceedings{zhang2020tricks,
  author    = {Yongshun Zhang and Xiu{-}Shen Wei and Boyan Zhou and Jianxin Wu},
  title     = {Bag of Tricks for Long-Tailed Visual Recognition with Deep Convolutional Neural Networks},
  booktitle = {AAAI},
  year      = {2021},
}

Contacts

If you have any question about our work, please do not hesitate to contact us by emails provided in the paper.

Owner
Yong-Shun Zhang
Computer Vision
Yong-Shun Zhang
Reproduction of Vision Transformer in Tensorflow2. Train from scratch and Finetune.

Vision Transformer(ViT) in Tensorflow2 Tensorflow2 implementation of the Vision Transformer(ViT). This repository is for An image is worth 16x16 words

sungjun lee 42 Dec 27, 2022
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 06, 2022
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
CowHerd is a partially-observed reinforcement learning environment

CowHerd is a partially-observed reinforcement learning environment, where the player walks around an area and is rewarded for milking cows. The cows try to escape and the player can place fences to h

Danijar Hafner 6 Mar 06, 2022
Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Render In-between: Motion Guided Video Synthesis for Action Interpolation [Paper] [Supp] [arXiv] [4min Video] This is the official Pytorch implementat

8 Oct 27, 2022
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
Pytorch0.4.1 codes for InsightFace

InsightFace_Pytorch Pytorch0.4.1 codes for InsightFace 1. Intro This repo is a reimplementation of Arcface(paper), or Insightface(github) For models,

1.5k Jan 01, 2023
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
HuSpaCy: industrial-strength Hungarian natural language processing

HuSpaCy: Industrial-strength Hungarian NLP HuSpaCy is a spaCy model and a library providing industrial-strength Hungarian language processing faciliti

HuSpaCy 120 Dec 14, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
Adversarial Texture Optimization from RGB-D Scans (CVPR 2020).

AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). Scanning Data Download Please refer to data directory for details. B

Jingwei Huang 153 Nov 28, 2022
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning It includes /bert, which is the original BERT repos

Mitchell Gordon 11 Nov 15, 2022
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022
The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment

Hailo Model Zoo The Hailo Model Zoo provides pre-trained models for high-performance deep learning applications. Using the Hailo Model Zoo you can mea

Hailo 50 Dec 07, 2022
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022
BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer Accepted as Poster in BMVC 2021 This is an official implementation in P

Sauradip Nag 14 Dec 09, 2022