EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

Related tags

Deep LearningEdMIPS
Overview

EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

by Zhaowei Cai, and Nuno Vasconcelos.

This implementation is written by Zhaowei Cai at UC San Diego.

Introduction

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network architectures, including ResNet, GoogLeNet, and Inception-V3. More details can be found in the paper.

Citation

If you use our code/model/data, please cite our paper:

@inproceedings{cai20edmips,
  author = {Zhaowei Cai and Nuno Vasconcelos},
  Title = {Rethinking Differentiable Search for Mixed-Precision Neural Networks},
  booktitle = {CVPR},
  Year  = {2020}
}

Installation

  1. Install PyTorch and ImageNet dataset following the official PyTorch ImageNet training code.

  2. Clone the EdMIPS repository, and we'll call the directory that you cloned EdMIPS into EdMIPS_ROOT

    git clone https://github.com/zhaoweicai/EdMIPS.git
    cd EdMIPS_ROOT/

Searching the Mixed-precision Network with EdMIPS

You can start training EdMIPS. Take ResNet-18 for example.

python search.py \
  -a mixres18_w1234a234 --epochs 25 --step-epoch 10 --lr 0.1 --lra 0.01 --cd 0.00335 -j 16 \
  [your imagenet-folder with train and val folders]

The other network architectures are also available, including ResNet-50, GoogLeNet and Inception-V3.

Training the Searched Mixed-precision Network

After the EdMIPS searching is finished, with the checkpoint arch_checkpoint.pth.tar, you can start to train the classification model with the learned bit allocation.

python main.py \
  -a quantres18_cfg --epochs 95 --step-epoch 30 -j 16 \
  --ac arch_checkpoint.pth.tar \
  [your imagenet-folder with train and val folders]

Results

The results are shown as following:

network precision bit --cd top-1/5 acc. model
ResNet-18 uniform 2.0 65.1/86.2 download
ResNet-18 mixed 1.992 0.00335 65.9/86.5 download
ResNet-50 uniform 2.0 70.6/89.8 download
ResNet-50 mixed 2.007 0.00015 72.1/90.6 download
GoogleNet uniform 2.0 64.8/86.3 download
GoogleNet mixed 1.994 0.00045 67.8/88.0 download
Inception-V3 uniform 2.0 71.0/89.9 download
Inception-V3 mixed 1.982 0.0015 72.4/90.7 download

Disclaimer

  1. The training of EdMIPS has some variance. Tune --cd a little bit to get the optimal bit allocation you want.

  2. The BitOps are counted only on the quantized layers. They are normalized to the bit space as in the above table.

  3. Since some changes have been made after the paper submission, you may get slightly worse performances (0.1~0.2 points) than those in the paper.

If you encounter any issue when using our code/model, please let me know.

Owner
Zhaowei Cai
Zhaowei Cai
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
unet-family: Ultimate version

unet-family: Ultimate version 基于之前my-unet代码,我整理出来了这一份终极版本unet-family,方便其他人阅读。 相比于之前的my-unet代码,代码分类更加规范,有条理 对于clone下来的代码不需要修改各种复杂繁琐的路径问题,直接就可以运行。 并且代码有

2 Sep 19, 2022
A research toolkit for particle swarm optimization in Python

PySwarms is an extensible research toolkit for particle swarm optimization (PSO) in Python. It is intended for swarm intelligence researchers, practit

Lj Miranda 1k Dec 30, 2022
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation

CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation We propose a novel approach to translate unpaired contrast computed

Nicolae Catalin Ristea 13 Jan 02, 2023
[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers This is the official PyTorch implementation and models for UP-DETR paper: @a

dddzg 430 Dec 23, 2022
Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis

Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis This is a PyTorch implementation of the model described in our pape

qzhb 6 Jul 08, 2021
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

39 Dec 17, 2022
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021

CVMI Lab 58 Jan 01, 2023
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
Machine Learning Model deployment for Container (TensorFlow Serving)

try_tf_serving ├───dataset │ ├───testing │ │ ├───paper │ │ ├───rock │ │ └───scissors │ └───training │ ├───paper │ ├───rock

Azhar Rizki Zulma 5 Jan 07, 2022
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

Mathieu Fourment 2 Sep 01, 2022
Individual Treatment Effect Estimation

CAPE Individual Treatment Effect Estimation Run CAPE python train_causal.py --loop 10 -m cape_cau -d NI --i_t 1 Run a baseline model python train_cau

S. Deng 4 Sep 02, 2022
Deep Compression for Dense Point Cloud Maps.

DEPOCO This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps. How to get started (using Docker)

Photogrammetry & Robotics Bonn 67 Dec 06, 2022
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023