PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Overview

Neural Scene Flow Fields

PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

[Project Website] [Paper] [Video]

Dependency

The code is tested with Python3, Pytorch >= 1.6 and CUDA >= 10.2, the dependencies includes

  • configargparse
  • matplotlib
  • opencv
  • scikit-image
  • scipy
  • cupy
  • imageio.
  • tqdm

Video preprocessing

  1. Download nerf_data.zip from link, an example input video with SfM camera poses and intrinsics estimated from COLMAP (Note you need to use COLMAP "colmap image_undistorter" command to undistort input images to get "dense" folder as shown in the example, this dense folder should include "images" and "sparse" folders).

  2. Download single view depth prediction model "model.pt" from link, and put it on the folder "nsff_scripts".

  3. Run the following commands to generate required inputs for training/inference:

    # Usage
    cd nsff_scripts
    # create camera intrinsics/extrinsic format for NSFF, same as original NeRF where it uses imgs2poses.py script from the LLFF code: https://github.com/Fyusion/LLFF/blob/master/imgs2poses.py
    python save_poses_nerf.py --data_path "/home/xxx/Neural-Scene-Flow-Fields/kid-running/dense/"
    # Resize input images and run single view model
    python run_midas.py --data_path "/home/xxx/Neural-Scene-Flow-Fields/kid-running/dense/" --input_w 640 --input_h 360 --resize_height 288
    # Run optical flow model (for easy setup and Pytorch version consistency, we use RAFT as backbond optical flow model, but should be easy to change to other models such as PWC-Net or FlowNet2.0)
    ./download_models.sh
    python run_flows_video.py --model models/raft-things.pth --data_path /home/xxx/Neural-Scene-Flow-Fields/kid-running/dense/ --epi_threhold 1.0 --input_flow_w 768 --input_semantic_w 1024 --input_semantic_h 576

Rendering from an example pretrained model

  1. Download pretraind model "kid-running_ndc_5f_sv_of_sm_unify3_F00-30.zip" from link. Unzipping and putting it in the folder "nsff_exp/logs/kid-running_ndc_5f_sv_of_sm_unify3_F00-30/360000.tar".

Set datadir in config/config_kid-running.txt to the root directory of input video. Then go to directory "nsff_exp":

   cd nsff_exp
  1. Rendering of fixed time, viewpoint interpolation
   python run_nerf.py --config configs/config_kid-running.txt --render_bt --target_idx 10

By running the example command, you should get the following result: Alt Text

  1. Rendering of fixed viewpoint, time interpolation
   python run_nerf.py --config configs/config_kid-running.txt --render_lockcam_slowmo --target_idx 8

By running the example command, you should get the following result: Alt Text

  1. Rendering of space-time interpolation
   python run_nerf.py --config configs/config_kid-running.txt --render_slowmo_bt  --target_idx 10

By running the example command, you should get the following result: Alt Text

Training

  1. In configs/config_kid-running.txt, modifying expname to any name you like (different from the original one), and running the following command to train the model:
    python run_nerf.py --config configs/config_kid-running.txt

The per-scene training takes ~2 days using 2 Nvidia V100 GPUs.

  1. Several parameters in config files you might need to know for training a good model
  • N_samples: in order to render images with higher resolution, you have to increase number sampled points
  • start_frame, end_frame: indicate training frame range. The default model usually works for video of 1~2s. Training on longer frames can cause oversmooth rendering. To mitigate the effect, you can increase the capacity of the network by increasing netwidth (but it can drastically increase training time and memory usage).
  • decay_iteration: number of iteartion in initialization stage. Data-driven losses will decay every 1000*decay_iteration steps. It's usually good to match decay_iteration to the number of training frames.
  • no_ndc: our current implementation only supports reconstruction in NDC space, meaning it only works for forward-facing scene like original NeRF. But it should be not hard to adapt to euclidean space.
  • use_motion_mask, num_extra_sample: whether to use estimated coarse motion segmentation mask to perform hard-mining sampling during initialization stage, and how many extra samples during initialization stage.
  • w_depth, w_optical_flow: weight of losses for single-view depth and geometry consistency priors described in the paper
  • w_cycle: weights of scene flow cycle consistency loss
  • w_sm: weight of scene flow smoothness loss
  • w_prob_reg: weight of disocculusion weight regularization

Evaluation on the Dynamic Scene Dataset

  1. Download Dynamic Scene dataset "dynamic_scene_data_full.zip" from link

  2. Download pretrained model "dynamic_scene_pretrained_models.zip" from link, unzip and put them in the folder "nsff_exp/logs/"

  3. Run the following command for each scene to get quantitative results reported in the paper:

   # Usage: configs/config_xxx.txt indicates each scene name such as config_balloon1-2.txt in nsff/configs
   python evaluation.py --config configs/config_xxx.txt
  • Note: you have to use modified LPIPS implementation included in this branch in order to measure LIPIS error for dynamic region only as described in the paper.

Acknowledgment

The code is based on implementation of several prior work:

License

This repository is released under the MIT license.

Citation

If you find our code/models useful, please consider citing our paper:

@article{li2020neural,
  title={Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes},
  author={Li, Zhengqi and Niklaus, Simon and Snavely, Noah and Wang, Oliver},
  journal={arXiv preprint arXiv:2011.13084},
  year={2020}
}
Owner
Zhengqi Li
CS Ph.D. student at Cornell University/Cornell Tech
Zhengqi Li
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
Generalized Decision Transformer for Offline Hindsight Information Matching

Generalized Decision Transformer for Offline Hindsight Information Matching [arxiv] If you use this codebase for your research, please cite the paper:

Hiroki Furuta 35 Dec 12, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 168 Dec 28, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
[CVPR 2021] Forecasting the panoptic segmentation of future video frames

Panoptic Segmentation Forecasting Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow, Alexander Schwing - CVPR 2021 [Link to paper] We propose

Niantic Labs 44 Nov 29, 2022
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks This repository contains a TensorFlow implementation of "

Jingwei Zheng 5 Jan 08, 2023
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Qing Guo 146 Dec 31, 2022
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022
A embed able annotation tool for end to end cross document co-reference

CoRefi CoRefi is an emebedable web component and stand alone suite for exaughstive Within Document and Cross Document Coreference Anntoation. For a de

PythicCoder 39 Dec 12, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

Dongkwan Kim 127 Dec 28, 2022
Multiwavelets-based operator model

Multiwavelet model for Operator maps Gaurav Gupta, Xiongye Xiao, and Paul Bogdan Multiwavelet-based Operator Learning for Differential Equations In Ne

Gaurav 33 Dec 04, 2022
Official Implementation for "StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery" (ICCV 2021 Oral)

StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery (ICCV 2021 Oral) Run this model on Replicate Optimization: Global directions: Mapper: Check ou

3.3k Jan 05, 2023
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe

YueSong 32 Dec 25, 2022
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022