This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Related tags

Deep LearningMesa
Overview

Mesa: A Memory-saving Training Framework for Transformers

This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Transformers.

By Zizheng Pan, Peng Chen, Haoyu He, Jing Liu, Jianfei Cai and Bohan Zhuang.

image-20211116105242785

Installation

  1. Create a virtual environment with anaconda.

    conda create -n mesa python=3.7 -y
    conda activate mesa
    
    # Install PyTorch, we use PyTorch 1.7.1 with CUDA 10.1 
    pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
    
    # Install ninja
    pip install ninja
  2. Build and install Mesa.

    # cloen this repo
    git clone https://github.com/zhuang-group/Mesa
    # build
    cd Mesa/
    # You need to have an NVIDIA GPU
    python setup.py develop

Usage

  1. Prepare your policy and save as a text file, e.g. policy.txt.

    on gelu: # layer tag, choices: fc, conv, gelu, bn, relu, softmax, matmul, layernorm
        by_index: all # layer index
        enable: True # enable for compressing
        level: 256 # we adopt 8-bit quantization by default
        ema_decay: 0.9 # the decay rate for running estimates
        
        by_index: 1 2 # e.g. exluding GELU layers that indexed by 1 and 2.
        enable: False
  2. Next, you can wrap your model with Mesa by:

    import mesa as ms
    ms.policy.convert_by_num_groups(model, 3)
    # or convert by group size with ms.policy.convert_by_group_size(model, 64)
    
    # setup compression policy
    ms.policy.deploy_on_init(model, '[path to policy.txt]', verbose=print, override_verbose=False)

    That's all you need to use Mesa for memory saving.

    Note that convert_by_num_groups and convert_by_group_size only recognize nn.XXX, if your code has functional operations, such as [email protected] and F.Softmax, you may need to manually setup these layers. For example:

    # matrix multipcation (before)
    out = Q@K.transpose(-2, -1)
    # with Mesa
    self.mm = ms.MatMul(quant_groups=3)
    out = self.mm(q, k.transpose(-2, -1))
    
    # sofmtax (before)
    attn = attn.softmax(dim=-1)
    # with Mesa
    self.softmax = ms.Softmax(dim=-1, quant_groups=3)
    attn = self.softmax(attn)
  3. You can also target one layer by:

    import mesa as ms
    # previous 
    self.act = nn.GELU()
    # with Mesa
    self.act = ms.GELU(quant_groups=[num of quantization groups])

Demo projects for DeiT and Swin

We provide demo projects to replicate our results of training DeiT and Swin with Mesa, please refer to DeiT-Mesa and Swin-Mesa.

Results on ImageNet

Model Param (M) FLOPs (G) Train Memory Top-1 (%)
DeiT-Ti 5 1.3 4,171 71.9
DeiT-Ti w/ Mesa 5 1.3 1,858 72.1
DeiT-S 22 4.6 8,459 79.8
DeiT-S w/ Mesa 22 4.6 3,840 80.0
DeiT-B 86 17.5 17,691 81.8
DeiT-B w/ Mesa 86 17.5 8,616 81.8
Swin-Ti 29 4.5 11,812 81.3
Swin-Ti w/ Mesa 29 4.5 5,371 81.3
PVT-Ti 13 1.9 7,800 75.1
PVT-Ti w/ Mesa 13 1.9 3,782 74.9

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Acknowledgments

This repository has adopted part of the quantization codes from ActNN, we thank the authors for their open-sourced code.

Owner
Zhuang AI Group
Zhuang AI Group
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
A Python 3 package for state-of-the-art statistical dimension reduction methods

direpack: a Python 3 library for state-of-the-art statistical dimension reduction techniques This package delivers a scikit-learn compatible Python 3

Sven Serneels 32 Dec 14, 2022
Direct application of DALLE-2 to video synthesis, using factored space-time Unet and Transformers

DALLE2 Video (wip) ** only to be built after DALLE2 image is done and replicated, and the importance of the prior network is validated ** Direct appli

Phil Wang 105 May 15, 2022
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Hah Min Lew 1 Feb 08, 2022
Clustergram - Visualization and diagnostics for cluster analysis in Python

Clustergram Visualization and diagnostics for cluster analysis Clustergram is a diagram proposed by Matthias Schonlau in his paper The clustergram: A

Martin Fleischmann 96 Dec 26, 2022
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
Non-Metric Space Library (NMSLIB): An efficient similarity search library and a toolkit for evaluation of k-NN methods for generic non-metric spaces.

Non-Metric Space Library (NMSLIB) Important Notes NMSLIB is generic but fast, see the results of ANN benchmarks. A standalone implementation of our fa

2.9k Jan 04, 2023
CausaLM: Causal Model Explanation Through Counterfactual Language Models

CausaLM: Causal Model Explanation Through Counterfactual Language Models Authors: Amir Feder, Nadav Oved, Uri Shalit, Roi Reichart Abstract: Understan

Amir Feder 39 Jul 10, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki

Google Research 75 Nov 01, 2022
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022
Author's PyTorch implementation of TD3 for OpenAI gym tasks

Addressing Function Approximation Error in Actor-Critic Methods PyTorch implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3). If y

Scott Fujimoto 1.3k Dec 25, 2022
Virtual Dance Reality Stage: a feature that offers you to share a stage with another user virtually

Portrait Segmentation using Tensorflow This script removes the background from an input image. You can read more about segmentation here Setup The scr

291 Dec 24, 2022
A series of Jupyter notebooks with Chinese comment that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.

Hands-on-Machine-Learning 目的 这份笔记旨在帮助中文学习者以一种较快较系统的方式入门机器学习, 是在学习Hands-on Machine Learning with Scikit-Learn and TensorFlow这本书的 时候做的个人笔记: 此项目的可取之处 原书的

Baymax 1.5k Dec 21, 2022
🐦 Opytimizer is a Python library consisting of meta-heuristic optimization techniques.

Opytimizer: A Nature-Inspired Python Optimizer Welcome to Opytimizer. Did you ever reach a bottleneck in your computational experiments? Are you tired

Gustavo Rosa 546 Dec 31, 2022
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022