PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

Related tags

Deep LearningSSTN
Overview

PyTorch Implementation of SSTN for Hyperspectral Image Classification

Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the implementation of SSTN and SSRN here: NetworkBlocks

UPDATE: Source codes of training and testing SSTN/SSRN on Kennedy Space Center (KSC) dataset have been added, in addition to those on Pavia Center (PC), Indian Pines(IN), and University of Pavia (UP) datasets.

Here is the bibliography info:

Zilong Zhong, Ying Li, Lingfei Ma, Jonathan Li, Wei-Shi Zheng. "Spectral-Spatial Transformer 
Network for Hyperspectral Image Classification: A Factorized Architecture Search Framework.” 
IEEE Transactions on Geoscience and Remote Sensing, DOI:10.1109/TGRS.2021.3115699,2021.

Description

Neural networks have dominated the research of hyperspectral image classification, attributing to the feature learning capacity of convolution operations. However, the fixed geometric structure of convolution kernels hinders long-range interaction between features from distant locations. In this work, we propose a novel spectral-spatial transformer network (SSTN), which consists of spatial attention and spectral association modules, to overcome the constraints of convolution kernels. Extensive experiments conducted on three popular hyperspectral image benchmarks demonstrate the versatility of SSTNs over other state-of-the-art (SOTA) methods. Most importantly, SSTN obtains comparable accuracy to or outperforms SOTA methods with only 1.2% of multiply-and-accumulate (MAC) operations compared to a strong baseline SSRN.

Fig.1 Spectral-Spatial Transformer Network (SSTN) with the architecture of 'AEAE', in which 'A' and 'E' stand for a spatial attention block and a spectral association block, respectively. (a) Search space for unit setting. (b) Search space for block sequence.

Fig.2 Illustration of spatial attention module (left) and spectral association module (right). The attention maps Attn in the spatial attention module is produced by multiplying two reshaped tensors Q and K. Instead, the attention maps M1 and M2 in the spectral association module are the direct output of a convolution operation. The spectral association kernels Asso represent a compact set of spectral vectors used to reconstruct input feature X.

Prerequisites

When you create a conda environment, check you have installed the packages in the package-list. You can also refer to the managing environments of conda.

Usage

HSI data can be downloaded from this website HyperspectralData. Before training or evaluating different models, please make sure the datasets are in the correct folder and download the Pavia Center (PC) HSI dataset, which is too large to upload here. For example, the raw HSI imagery and its ground truth map for the PC dataset should be put in the following two paths:

./dataset/PC/Pavia.mat
./dataset/PC/Pavia_gt.mat 

Commands to train SSTNs with widely studied hyperspectral imagery (HSI) datasets:

$ python train_PC.py
$ python train_KSC.py
$ python train_IN.py
$ python train_UP.py

Commands to train SSRNs with widely studied hyperspectral imagery (HSI) datasets:

$ python train_PC.py --model SSRN
$ python train_KSC.py --model SSRN
$ python train_IN.py --model SSRN
$ python train_UP.py --model SSRN

Commands to test trained SSTNs and generate classification maps:

$ python test_IN.py
$ python test_KSC.py
$ python test_UP.py
$ python test_PC.py

Commands to test trained SSRNs and generate classification maps:

$ python test_IN.py --model SSRN
$ python test_KSC.py --model SSRN
$ python test_UP.py --model SSRN
$ python test_PC.py --model SSRN

Result of Pavia Center (PC) Dataset

Fig.3 Classification maps of different models with 200 samples for training on the PC dataset. (a) False color image. (b) Ground truth labels. (c) Classification map of SSRN (Overall Accuracy 97.64%) . (d) Classification map of SSTN (Overall Accuracy 98.95%) .

Result of Kennedy Space Center (KSC) Dataset

Fig.3 Classification maps of different models with 200 samples for training on the KSC dataset. (a) False color image. (b) Ground truth labels. (c) Classification map of SSRN (Overall Accuracy 96.60%) . (d) Classification map of SSTN (Overall Accuracy 97.66%) .

Result of Indian Pines (IN) dataset

Fig.4 Classification maps of different models with 200 samples for training on the IN dataset. (a) False color image. (b) Ground truth labels. (c) Classification map of SSRN (Overall Accuracy 91.75%) . (d) Classification map of SSTN (Overall Accuracy 94.78%).

Result of University of Pavia (UP) dataset

Fig.5 Classification maps of different models with 200 samples for training on the UP dataset. (a) False color image. (b) Ground truth labels. (c) Classification map of SSRN (Overall Accuracy 95.09%) . (d) Classification map of SSTN (Overall Accuracy 98.21%).

Reference

  1. Tensorflow implementation of SSRN: https://github.com/zilongzhong/SSRN.
  2. Auto-CNN-HSI-Classification: https://github.com/YushiChen/Auto-CNN-HSI-Classification
Owner
Zilong Zhong
PhD in Machine Learning and Intelligence at the Department of Systems Design Engineering, University of Waterloo
Zilong Zhong
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
pytorch implementation of ABC : Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning

ABC:Auxiliary Balanced Classifier for Class-imbalanced Semi-supervised Learning, NeurIPS 2021 pytorch implementation of ABC : Auxiliary Balanced Class

Hyuck Lee 25 Dec 22, 2022
Python package to generate image embeddings with CLIP without PyTorch/TensorFlow

imgbeddings A Python package to generate embedding vectors from images, using OpenAI's robust CLIP model via Hugging Face transformers. These image em

Max Woolf 81 Jan 04, 2023
Exploiting Robust Unsupervised Video Person Re-identification

Exploiting Robust Unsupervised Video Person Re-identification Implementation of the proposed uPMnet. For the preprint, please refer to [Arxiv]. Gettin

1 Apr 09, 2022
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Microsoft 1.3k Dec 30, 2022
Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Learned Virtual View Visibility ICCV2021

Vis2Mesh This is the offical repository of the paper: Vis2Mesh: Efficient Mesh Reconstruction from Unstructured Point Clouds of Large Scenes with Lear

71 Dec 25, 2022
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022
A curated list of neural network pruning resources.

A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.

Yang He 1.7k Jan 09, 2023
T2F: text to face generation using Deep Learning

⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN

Animesh Karnewar 533 Dec 22, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Google Landmark Recogntion and Retrieval 2021 Solutions

Google Landmark Recogntion and Retrieval 2021 Solutions In this repository you can find solution and code for Google Landmark Recognition 2021 and Goo

Vadim Timakin 5 Nov 25, 2022
Software associated to AAAI paper "Planning with Biological Neurons and Synapses"

jBrain Software associated with the AAAI 2022 paper Francesco D'Amore, Daniel Mitropolsky, Pierluigi Crescenzi, Emanuele Natale, Christos H. Papadimit

Pierluigi Crescenzi 1 Apr 10, 2022
Research using Cirq!

ReCirq Research using Cirq! This project contains modules for running quantum computing applications and experiments through Cirq and Quantum Engine.

quantumlib 230 Dec 29, 2022
An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics.

Sketch Simulator An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics. See

12 Dec 18, 2022
Fortuitous Forgetting in Connectionist Networks

Fortuitous Forgetting in Connectionist Networks Introduction This repository includes reference code for the paper Fortuitous Forgetting in Connection

Hattie Zhou 14 Nov 26, 2022
Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Michael Brant 3 Jan 11, 2022
Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach

This repository holds the implementation for paper Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach Download our preproc

Qitian Wu 42 Dec 27, 2022
Pytorch and Keras Implementations of Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects.

The repository contains the implementations for Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects. Model

Ankur Deria 115 Jan 06, 2023
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 08, 2023