TensorFlow 2 AI/ML library wrapper for openFrameworks

Overview

ofxTensorFlow2

ofxTensorFlow2 thumbnail

This is an openFrameworks addon for the TensorFlow 2 ML (Machine Learning) library. The code has been developed by the ZKM | Hertz-Lab as part of the project »The Intelligent Museum«.

Copyright (c) 2021 ZKM | Karlsruhe.

BSD Simplified License.

For information on usage and redistribution, and for a DISCLAIMER OF ALL WARRANTIES, see the file, "LICENSE.txt," in this distribution.

Description

ofxTensorFlow2 is an openFrameworks addon for loading and running ML models trained with the TensorFlow 2 ML (Machine Learning) library:

TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications.

https://www.tensorflow.org

The addon utilizes the TensorFlow 2 C library wrapped by the open source cppflow 2 C++ interface:

Run TensorFlow models in c++ without Bazel, without TensorFlow installation and without compiling TensorFlow. Perform tensor manipulation, use eager execution and run saved models directly from C++.

https://github.com/serizba/cppflow/tree/cppflow2

Additional classes wrap the process of loading & running a model and utility functions are provided for conversion between common openFrameworks types (images, pixels, audio samples, etc) and TensorFlow2 tensors.

openFrameworks is a cross platform open source toolkit for creative coding in C++.

Quick Start

Minimal quick start for a Unix shell to clone cppflow, download pre-built TensorFlow 2 dynamic libraries and pre-trained example models, starting in the root openFrameworks folder:

cd addons
git clone [email protected]:Hertz-Lab/Research/intelligent-museum/ofxTensorFlow2.git
cd ofxTensorFlow2
git submodule update --init --recursive
./scripts/download_tensorflow.sh
./scripts/download_example_models.sh

For further information, please find detailed instructions below.

Note: The TensorFlow download script grabs the CPU-optimized build by default.

Requirements

  • openFrameworks
  • Operating systems:
    • Linux, 64-bit, x86
    • macOS 10.14 (Mojave) or higher, 64-bit, x86
    • Windows, 64-bit x86 (should work, not tested)

To use ofxTensorFlow2, first you need to download and install openFrameworks. The examples are developed against the latest release version of openFrameworks on http://openframeworks.cc/download.

OF github repository

Currently, ofxTensorFlow2 is being developed on Linux and macOS. Windows should work but has not yet been tested.

The main supported operating systems & architectures are those which have pre-built versions of libtensorflow available for download from the TensorFlow website. Other system configurations are possible but may require building and/or installing libtensorflow manually.

Installation and Build

Clone (or download and extract) this repository to the addon folder of openFrameworks. Replace OF_ROOT with the path to your openFrameworks installation

cd OF_ROOT/addons
git clone [email protected]:Hertz-Lab/Research/intelligent-museum/ofxTensorFlow2.git

Dependencies

  • TensorFlow 2
  • cppflow 2

Since TensorFlow does not ship a C++ Library we make use of cppflow2, which is a C++ wrapper around the TensorFlow 2 C API.

Pull cppflow to libs/cppflow and checkout cppflow2:

cd ofxTensorFlow2
git submodule update --init --recursive

Next, download the pre-built TensorFlow2 C library and extract the following folders to their destination:

include/ --> libs/tensorflow/include
lib/ --> libs/tensorflow/lib/[osx/linux64/msys2/vs]

To make this quick, you can use a script which automates the download:

./scripts/download_tensorflow.sh

When opting for GPU support set the TYPE script variable:

TYPE=gpu ./scripts/download_tensorflow.sh

See https://www.tensorflow.org/install/gpu for more information on GPU support for TensorFlow.

Ubuntu / Linux

To run applications using ofxTensorFlow2, the path to the addon's lib/tensorflow subfolder needs to be added to the LD_LIBRARY_PATH environment variable.

Temporary Lib Path Export

The path can be temporarily added via an export on the commandline (replace OF_ROOT with the path to your openFrameworks installation) before running the application:

export LD_LIBRARY_PATH=OF_ROOT/addons/ofxTensorFlow2/libs/tensorflow/lib/linux64/:$LD_LIBRARY_PATH
make run

This step can also be automated by additional makefile targets provided by the addon_targets.mk file. To use it, add the following to the end of the project's Makefile:

# ofxTensorFlow2
include $(OF_ROOT)/addons/ofxTensorFlow2/addon_targets.mk

This adds two additional targets, one for Debug and the other for Release, which run the application after exporting the LD_LIBRARY_PATH. For example, to run a debug version of the application:

make RunDebugTF2

Similarly, for release builds use:

make RunReleaseTF2

Permanent Lib Path Export

For a permanent "set and forget" solution, the export line can be added to the end of your shell's user startup script, ie. ~/.zshrc or /.bash_profile to add the path whenever a new shell session is opened. Once set, the manual export is no longer required when running an ofxTensorFlow2 application.

Using libtensorflow Installed to the System

To use libtensorflow installed to a system path, ie. by your system's package manager, the path(s) need to be added to the project header include and library search paths and the libraries need to be passed to the linker.

  1. If libtensorflow was downloaded to libs/tensorflow/, remove all files in this folder
  2. Edit addon_config.mk under the "linux64" build target: comment the "local path" sections
  3. If using the OF Project Generator, (re)regenerate project files for projects using the addon

Note: When using libtensorflow installed to the system, the LD_LIBRARY_PATH export is not needed.

macOS

The cppflow library requires C++14 which needs to be enabled when building on macOS.

libtensorflow is provided as pre-compiled dynamic libraries. On macOS these .dylib files need to be configured and copied into the build macOS .app. These steps are automated via the scripts/macos_install_libs.sh script and can be invoked when building, either by Xcode or the Makefiles.

Alternatively, you can use libtensorflow compiled and installed to the system, ie. /usr/local or /usr/opt. In this case, the dylibs do not need to be copied into the macOS .app, however the built app will not run on other computers without the same libraries installed to the same location.

Xcode build

Enable C++14 features by changing the CLANG_CXX_LANGUAGE_STANDARD define in OF_ROOT/libs/openFrameworksCompiled/project/osx/CoreOF.xcconfig, for example:

CLANG_CXX_LANGUAGE_STANDARD[arch=x86_64] = c++14

After generating project files using the OF Project Generator, add the following to one of the Run Script build phases in the Xcode project to invoke the macos_install_libs.sh script:

  1. Select the project in the left-hand Xcode project tree
  2. Select the project build target under TARGETS
  3. Under the Build Phases tab, find the 2nd Run Script, and add the following before the final echo line:
$OF_PATH/addons/ofxTensorFlow2/scripts/macos_install_libs.sh "$TARGET_BUILD_DIR/$PRODUCT_NAME.app";

Makefile build

Enable C++14 features by changing -std=c++11 to -std=c++14 on line 142 in OF_ROOT/libs/openFrameworksCompiled/project/osx/config.osx.default.mk:

PLATFORM_CXXFLAGS += -std=c++14

When building an application using the makefiles, an additional step is required to install & configure the tensorflow2 dylibs into the project .app. This is partially automated by the scripts/macos_install_libs.sh script which is called from the addon_targets.mk file. To use it, add the following to the end of the project's Makefile:

# ofxTensorFlow2
include $(OF_ROOT)/addons/ofxTensorFlow2/addon_targets.mk

This adds two additional targets, one for Debug and the other for Release, which call the script to install the .dylibs. For example, to build a debug version of the application and install the libs, simply run:

make DebugTF2

Similarly, for release builds use:

make ReleaseTF2

This will also work when building the normal targets using two steps, for example:

make Debug
make DebugTF2

Using libtensorflow Installed to the System

To use libtensorflow installed to a system path, ie. from a package manager like Homebrew, the path(s) need to be added to the project header include and library search paths and the libraries need to be passed to the linker. The scripts/macos_install_libs.sh is not needed.

  1. If libtensorflow was downloaded to libs/tensorflow/, remove all files in this folder
  2. Edit addon_config.mk under the "osx" build target:
  • comment the "local path" sections and uncomment the "system path" sections
  • If needed, change the path for your system, ie. /usr/local to /usr/opt etc
  1. If using the OF Project Generator, (re)regenerate project files for projects using the addon

Running the Example Projects

The example projects are located in the example_XXXX directories.

Downloading Pre-Trained Models

Each example contains code to create a neural network and export it in the SavedModel format. Neural networks require training which may take hours or days in order to produce a satisfying output, therefore we provide pre-trained models which you can download as ZIP files, either from the release page on GitHub or from a public shared link here:

https://cloud.zkm.de/index.php/s/gfWEjyEr9X4gyY6

To make this quick, a script is provided to download and install the models for each example (requires a Unix shell, curl, and unzip):

cd OF_ROOT/addons/ofxTensorFlow2
./scripts/download_example_models.sh

By default, the example applications try to load a SavedModel named "model" (or "models" depending on the example) located in example_XXXX/bin/data/. When downloading or training a model, please make sure the SavedModel is at this location and has the right name, otherwise update the model load path string.

Generating Project Files

Project files for the examples are not included so you will need to generate the project files for your operating system and development environment using the OF ProjectGenerator which is included with the openFrameworks distribution.

To (re)generate project files for an existing project:

  • Click the "Import" button in the ProjectGenerator
  • Navigate to the project's parent folder ie. "ofxTensorFlow2", select the base folder for the example project ie. "example_XXXX", and click the Open button
  • Click the "Update" button

If everything went Ok, you should now be able to open the generated project and build/run the example.

macOS

Open the Xcode project, select the "example_XXXX Debug" scheme, and hit "Run".

For a Makefile build, build and run an example on the terminal:

cd example_XXXX
make ReleaseTF2
make RunRelease

Linux

For a Makefile build, build and run an example on the terminal:

cd example_XXXX
make Release
make RunReleaseTF2

Create a New ofxTensorFlow2 Project

Simply select ofxTensorFlow2 from the available addons in the OF ProjectGenerator before generating a new project. Make sure that all dependencies are installed and downloaded beforehand, otherwise the PG may miss some paths.

Training Models

Note: GPU support recommended

Model Format

ofxTensorFlow2 works with the TensorFlow 2 SavedModel format.

When referring to the "SavedModel" we mean the parent folder of the exported neural network containing two subfolder assets and variables and a saved_model.pb file. Do not change anything inside this folder, however renaming the folder is permitted as long as you you change the file path used within the application to match.

Requirements

For building a dataset and training a model for use with the ofxTensorFlow2 addon, use Python 3. For ease of use with dependency handling, using virtual environments is recommended. One such tool for this is anaconda or the smaller miniconda.

Install anaconda or miniconda, then install the pip3 package manager using conda:

conda install pip3

Included Example Projects

For each example project, create a new virtual environment. We will use conda to do so:

cd example_XXXX/python
conda create -n myEnv python=3.7
conda activate myEnv

With our virtual environment set up and activated we need to install the required python packages. A common package manager is pip. For each example we've listed the required packages using pip3 freeze > requirements.txt. You can easily install them by running:

pip3 install -r requirements.txt

As the training procedure and the way of configuring it varies a lot between the examples, please refer to the README.md provided in the python folder. Some may require to simply edit a config script and run:

python3 main.py

Others may require to feed additional information to the main.py script.

Creating Your Own Project Models

If you want to create your own Deep Learning project, here are some tips to guide you along the way.

IDE

Get an IDE (Integrated Development Environment) aka fancy text editor for development. As you will be using Python, choose a specialized IDE, e.g. Spyder (included in Anaconda) or PyCharm. Make sure to set the virtual environment as the interpreter for this project. If you choose to create the virtual environment using conda you will find a subfolder envs in the installation folder of anaconda. This includes a folder for every virtual environment. Choose the right one and go to bin and select the binary python as interpreter. This way the IDE can run and debug your projects.

Python

Get familiar with Python. The official Python tutorial is a great place to start. Python has a lot of functions in its standard library, but there are a lot of other external packages to look out for:

  • NumPy (efficient math algorithms and data structures)
  • Matplotlib (plotting in the style of Matlab)
  • TensorFlow 2 (ML library)
Keras

Get familiar with Keras. Since TensorFlow 2, Keras is the high level front-end of TensorFlow. It greatly reduces the effort of accessing common data structures (like labeled pictures), defining a Neural Network architecture and observing the training process using callbacks. Besides that, you can always call TensorFlow's core functions such as data pipelines.

Project Structure

Get some structure for your project. Your project could look a little bit like this:

  • data: stores scripts to download and maybe process some data
  • src: contains Python code for the model, preprocessing and train, test and eval procedures
  • main.py: often serves as a front to call the train, eval or test scripts
  • config.py: stores high level parameters such as learning rate, batch size, etc. Edit this file for different experiments. Formats other than .py are fine too, but it's very easy to integrate. It's a good choice to save this file along with trained models.
  • requirements.txt: contains required packages
Machine Learning

Get familiar with Machine Learning concepts. There is plenty of free information out there! Here is a list of material to look into:

  • Coursera: founded by ML expert Andrew Ng, lists free online courses for a lot of fields (including Python and Machine Learning)
  • Deeplearning.ai: a website dedicated to Deep Learning - also founded by Andrew Ng
  • Deep Learning book: a free website accompanying the book "Deep Learning" by Ian Goodfellow (known for GANs)
  • Stanford CS231: YouTube playlist of Stanford's Computer Vision course CS231
  • Machine Learning Mastery: a popular blog about practical ML techniques. It focuses on the ease of use
TensorFlow

Get familiar with TensorFlow's Tutorials. Besides learning how to write TensorFlow code, the tutorials will teach you ML concepts like overfitting and underfitting.

Datasets

Get to know common datasets. A great place to start is Kaggle. Here you can find thousands of datasets and accompanying code (in form of Python notebooks that run in your browser).

Inspiration

Get inspired and take the risk of making errors! We can not help you with the latter but check out this repo for some inspiration.

Developing

You can help develop ofxTensorFlow2 on GitHub: https://github.com/zkmkalrsruhe/ofxTensorFlow2

Create an account, clone or fork the repo, then request a push/merge.

If you find any bugs or suggestions please log them to GitHub as well.

Known Issues

dyld: Library not loaded: @rpath/libtensorflow.2.dylib

On macOS, the libtensorflow dynamic libraries (dylibs) need to be copied into the .app bundle. This error indicates the library loader cannot find the dylibs when the app starts and the build process is missing a step. Please check the "macOS" subsection under the "Installation & Build" section.

EXC_BAD_INSTRUCTION Crash on macOS

The pre-built libtensorflow downloaded to libs/tensorflow comes with AVX (Advanced Vector Extensions) enabled which is an extension to the Intel x86 instruction set for fast vector math. CPUs older than circa 2013 may not support this and the application will simply crash with error such as:

in libtensorflow_framework.2.dylib
...
EXC_BAD_INSTRUCTION (code=EXC_I386_INVOP, subcode=0x0)

This problem may also be seen when using libtensorflow installed via Homebrew.

The only solution is to build libtensorflow from source with AVX disabled use a machine with a newer CPU. To check if your CPU supports AVX use:

# print all CPU features
sysctl -a | grep cpu.feat

# prints only if CPU supports AVX
sysctl -a | grep cpu.feat | grep AVX

Systems confirmed: Mac Pro (Mid 2012)

Symbol not found: ____chkstk_darwin

The pre-built libtensorflow dynamic libraries downloaded from the TensorFlow website require a minimum of macOS 10.14. On macOS 10.13 or lower, the project may build but will fail on run with a runtime loader error:

dyld: lazy symbol binding failed: Symbol not found: ____chkstk_darwin
  Referenced from: /Users/na/of_v0.11.0_osx_release/addons/ofxTensorFlow2/example_basics/bin/example_basics.app/Contents/MacOS/./../Frameworks/libtensorflow.2.dylib (which was built for Mac OS X 10.15)
  Expected in: /usr/lib/libSystem.B.dylib

The only solutions are:

  1. upgrade to macOS 10.14 or newer (easier)
  2. use libtensorflow compiled for your system:
  • installed to system via a package manager, ie. Homebrew or Macports (harder)
  • or, build libtensorflow manually (probably hardest)

The Intelligent Museum

An artistic-curatorial field of experimentation for deep learning and visitor participation

The ZKM | Center for Art and Media and the Deutsches Museum Nuremberg cooperate with the goal of implementing an AI-supported exhibition. Together with researchers and international artists, new AI-based works of art will be realized during the next four years (2020-2023). They will be embedded in the AI-supported exhibition in both houses. The Project „The Intelligent Museum“ is funded by the Digital Culture Programme of the Kulturstiftung des Bundes (German Federal Cultural Foundation).

As part of the project, digital curating will be critically examined using various approaches of digital art. Experimenting with new digital aesthetics and forms of expression enables new museum experiences and thus new ways of museum communication and visitor participation. The museum is transformed to a place of experience and critical exchange.

Logo

Owner
Center for Art and Media Karlsruhe
Center for Art and Media Karlsruhe
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

tarsin 111 Dec 28, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

3 Dec 18, 2021
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
Tensors and neural networks in Haskell

Hasktorch Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the co

hasktorch 920 Jan 04, 2023
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
StorSeismic: An approach to pre-train a neural network to store seismic data features

StorSeismic: An approach to pre-train a neural network to store seismic data features This repository contains codes and resources to reproduce experi

Seismic Wave Analysis Group 11 Dec 05, 2022
METER: Multimodal End-to-end TransformER

METER Code and pre-trained models will be publicized soon. Citation @article{dou2021meter, title={An Empirical Study of Training End-to-End Vision-a

Zi-Yi Dou 257 Jan 06, 2023
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
The official codes of "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners".

SSL models are Strong UDA learners Introduction This is the official code of paper "Semi-supervised Models are Strong Unsupervised Domain Adaptation L

Yabin Zhang 26 Dec 26, 2022
Auxiliary data to the CHIIR paper Searching to Learn with Instructional Scaffolding

Searching to Learn with Instructional Scaffolding This is the data and analysis code for the paper "Searching to Learn with Instructional Scaffolding"

Arthur Câmara 2 Mar 02, 2022
Torch implementation of SegNet and deconvolutional network

Torch implementation of SegNet and deconvolutional network

Fedor Chervinskii 5 Jul 17, 2020
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Thomas Winters 36 Nov 15, 2022
Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF shows significant improvements over baseline fine-tuning without data filtration.

Information Gain Filtration Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF sho

4 Jul 28, 2022
Application of the L2HMC algorithm to simulations in lattice QCD.

l2hmc-qcd 📊 Slides Recent talk on Training Topological Samplers for Lattice Gauge Theory from the Machine Learning for High Energy Physics, on and of

Sam Foreman 37 Dec 14, 2022
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
Exploit ILP to learn symmetry breaking constraints of ASP programs.

ILP Symmetry Breaking Overview This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs. Given a

Research Group Production Systems 1 Apr 13, 2022
Open-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks.

pyradiomics v3.0.1 Build Status Linux macOS Windows Radiomics feature extraction in Python This is an open-source python package for the extraction of

Artificial Intelligence in Medicine (AIM) Program 842 Dec 28, 2022
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

Matthew Macy 606 Dec 21, 2022