U-Net Brain Tumor Segmentation

Overview

U-Net Brain Tumor Segmentation

🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is welcome), you can use TensorFlow dataset API instead.

This repo show you how to train a U-Net for brain tumor segmentation. By default, you need to download the training set of BRATS 2017 dataset, which have 210 HGG and 75 LGG volumes, and put the data folder along with all scripts.

data
  -- Brats17TrainingData
  -- train_dev_all
model.py
train.py
...

About the data

Note that according to the license, user have to apply the dataset from BRAST, please do NOT contact me for the dataset. Many thanks.


Fig 1: Brain Image
  • Each volume have 4 scanning images: FLAIR、T1、T1c and T2.
  • Each volume have 4 segmentation labels:
Label 0: background
Label 1: necrotic and non-enhancing tumor
Label 2: edema 
Label 4: enhancing tumor

The prepare_data_with_valid.py split the training set into 2 folds for training and validating. By default, it will use only half of the data for the sake of training speed, if you want to use all data, just change DATA_SIZE = 'half' to all.

About the method


Fig 2: Data augmentation

Start training

We train HGG and LGG together, as one network only have one task, set the task to all, necrotic, edema or enhance, "all" means learn to segment all tumors.

python train.py --task=all

Note that, if the loss stick on 1 at the beginning, it means the network doesn't converge to near-perfect accuracy, please try restart it.

Citation

If you find this project useful, we would be grateful if you cite the TensorLayer paper:

@article{tensorlayer2017,
author = {Dong, Hao and Supratak, Akara and Mai, Luo and Liu, Fangde and Oehmichen, Axel and Yu, Simiao and Guo, Yike},
journal = {ACM Multimedia},
title = {{TensorLayer: A Versatile Library for Efficient Deep Learning Development}},
url = {http://tensorlayer.org},
year = {2017}
}
Comments
  • TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    Lossy conversion from float64 to uint8. Range [-0.18539370596408844, 2.158207416534424]. Convert image to uint8 prior to saving to suppress this warning. Traceback (most recent call last): File "train.py", line 250, in main(args.task) File "train.py", line 106, in main X[:,:,2,np.newaxis], X[:,:,3,np.newaxis], y])#[:,:,np.newaxis]]) File "train.py", line 26, in distort_imgs fill_mode='constant') TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    opened by shenzeqi 8
  • MemoryError

    MemoryError

    @zsdonghao I am getting the memory error like this, What is the solution for this error?

    Traceback (most recent call last): File "train.py", line 279, in main(args.task) File "train.py", line 78, in main y_test = (y_test > 0).astype(int) MemoryError

    opened by PoonamZ 4
  • Error: Your CPU supports instructions that TensorFlow binary not compiled to use: AVX2

    Error: Your CPU supports instructions that TensorFlow binary not compiled to use: AVX2

    I am running run.py but gives error:

    (base) G:>cd BraTS_2018_U-Net-master

    (base) G:\BraTS_2018_U-Net-master>run.py [*] creates checkpoint ... [*] creates samples/all ... finished Brats18_2013_24_1 2019-06-15 22:05:45.959220: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 Traceback (most recent call last): File "G:\BraTS_2018_U-Net-master\run.py", line 154, in

    File "G:\BraTS_2018_U-Net-master\run.py", line 117, in main t_seg = tf.placeholder('float32', [1, nw, nh, 1], name='target_segment') NameError: name 'model' is not defined

    opened by sapnii2 2
  • TypeError: __init__() got an unexpected keyword argument 'out_size'

    TypeError: __init__() got an unexpected keyword argument 'out_size'

    • After conv: Tensor("u_net/conv8/leaky_relu:0", shape=(5, 1, 1, 512), dtype=float32, device=/device:CPU:0) Traceback (most re screenshot from 2019-02-19 18-02-42 cent call last): File "train.py", line 250, in main(args.task) File "train.py", line 121, in main net = model.u_net_bn(t_image, is_train=True, reuse=False, n_out=1) File "/home/achi/project/u-net-brain-tumor-master/model.py", line 179, in u_net_bn padding=pad, act=None, batch_size=batch_size, W_init=w_init, b_init=b_init, name='deconv7') File "/home/achi/anaconda3/lib/python3.6/site-packages/tensorlayer/decorators/deprecated_alias.py", line 24, in wrapper return f(*args, **kwargs) TypeError: init() got an unexpected keyword argument 'out_size'
    opened by achintacsgit 1
  • Pre-trained model

    Pre-trained model

    I was wondering if you would share a pre-trained model. I would need to run inference-only, and training the model is taking longer than expected.

    Thanks for sharing this project!

    opened by luisremis 1
  • TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    [TL] [!] checkpoint exists ... [TL] [!] samples/all exists ... Lossy conversion from float64 to uint8. Range [-0.19753389060497284, 2.826017379760742]. Convert image to uint8 prior to saving to suppress this warning.

    TypeError Traceback (most recent call last) in 239 tl.files.save_npz(net.all_params, name=save_dir+'/u_net_{}.npz'.format(task), sess=sess) 240 --> 241 main(task='all') 242 243 ##if name == "main":

    in main(task) 103 for i in range(10): 104 x_flair, x_t1, x_t1ce, x_t2, label = distort_imgs([X[:,:,0,np.newaxis], X[:,:,1,np.newaxis], --> 105 X[:,:,2,np.newaxis], X[:,:,3,np.newaxis], y])#[:,:,np.newaxis]]) 106 # print(x_flair.shape, x_t1.shape, x_t1ce.shape, x_t2.shape, label.shape) # (240, 240, 1) (240, 240, 1) (240, 240, 1) (240, 240, 1) (240, 240, 1) 107 X_dis = np.concatenate((x_flair, x_t1, x_t1ce, x_t2), axis=2)

    in distort_imgs(data) 23 x1, x2, x3, x4, y = tl.prepro.zoom_multi([x1, x2, x3, x4, y], 24 zoom_range=[0.9, 1.1], is_random=True, ---> 25 fill_mode='constant') 26 return x1, x2, x3, x4, y 27

    TypeError: zoom_multi() got an unexpected keyword argument 'is_random'

    opened by BTapan 0
  • TensorFlow Implemetation

    TensorFlow Implemetation

    Do you have implementation of brain tumor segmentation code directly in tensorflow without using tensorlayer? If yes, can you share the same? Thank you.

    opened by rupalkapdi 0
  • What is checkpoint?

    What is checkpoint?

    When I run "python train.py" and then have a checkpoint folder is created. What function of checkpoint folder? Thank you

    And I also have another question. When we had the picture, as follows. Is that the end result? I mean we can submit them to the Brast_2018 challenge? image

    Thank you very much.

    opened by tphankr 0
  • Making sense

    Making sense

    Novice here, i noticed the shape of the X_train arrays ended with 4. (240,240,4) Does each of those channel represent the type of the scan ( T1, t2, flair, t1ce ) ?

    opened by guido-niku 1
  • Classification Layer - Activation & Shape?

    Classification Layer - Activation & Shape?

    Hi!

    I went through this repository after reading your paper. Architecture on page 6, shows the final classification layer to produce feature maps of shape (240, 240, 2) which may indicate the use of a Softmax activation (not specified in the paper). On the contrary, model used in code has a classification layer of shape (240, 240, 1) using Sigmoid activation.

    Kindly clarify this ambiguity.

    opened by stalhabukhari 2
Releases(0.1)
Owner
Hao
Assistant Professor @ Peking University
Hao
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

BUPT GAMMA Lab 519 Jan 02, 2023
Social Network Ads Prediction

Social network advertising, also social media targeting, is a group of terms that are used to describe forms of online advertising that focus on social networking services.

Khazar 2 Jan 28, 2022
Efficient training of deep recommenders on cloud.

HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and

Alibaba 111 Dec 23, 2022
SOTA easy to use PyTorch-based DL training library

Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open

619 Jan 03, 2023
[CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search

LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search The official implementation of the paper LightTra

Multimedia Research 290 Dec 24, 2022
A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
A plug-and-play library for neural networks written in Python

A plug-and-play library for neural networks written in Python!

Dimos Michailidis 2 Jul 16, 2022
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 08, 2022
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper “Spectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust.

Demo BERT ONNX pipeline written in rust This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust. R

Xavier Tao 14 Dec 17, 2022
机器学习、深度学习、自然语言处理等人工智能基础知识总结。

说明 机器学习、深度学习、自然语言处理基础知识总结。 目前主要参考李航老师的《统计学习方法》一书,也有一些内容例如XGBoost、聚类、深度学习相关内容、NLP相关内容等是书中未提及的。

Peter 445 Dec 12, 2022
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
Large scale and asynchronous Hyperparameter Optimization at your fingertip.

Syne Tune This package provides state-of-the-art distributed hyperparameter optimizers (HPO) where trials can be evaluated with several backend option

Amazon Web Services - Labs 236 Jan 01, 2023
Syntax-Aware Action Targeting for Video Captioning

Syntax-Aware Action Targeting for Video Captioning Code for SAAT from "Syntax-Aware Action Targeting for Video Captioning" (Accepted to CVPR 2020). Th

59 Oct 13, 2022