一键翻译各类图片内文字

Overview

一键翻译各类图片内文字

针对群内、各个图站上大量不太可能会有人去翻译的图片设计,让我这种日语小白能够勉强看懂图片
主要支持日语,不过也能识别汉语和小写英文
支持简单的涂白和嵌字
该项目是求闻转译志的v2版本

使用说明

  1. clone这个repo
  2. 下载ocr.ckpt和detect.ckpt,放到这个repo的根目录下
  3. 申请百度翻译API,把你的appid和密钥存到key.py里
  4. 运行python translate_demo.py --image <图片文件路径>,结果会存放到result文件夹里

只是初步版本,我们需要您的帮助完善

这个项目目前只完成了简单的demo,依旧存在大量不完善的地方,我们需要您的帮助完善这个项目!

下一步

完善这个项目

  1. 图片涂改目前只是简单的涂白,图片修补的模型正在训练中!
  2. 【重要,请求帮助】目前的文字渲染引擎只能勉强看,和Adobe的渲染引擎差距明显,我们需要您的帮助完善文本渲染!
  3. 我尝试了在OCR模型里提取文字颜色,均以失败告终,现在只能用DPGMM凑活提取文字颜色,但是效果欠佳,我会尽量完善文字颜色提取,如果您有好的建议请尽管提issue
  4. 文本检测目前不能很好处理英语和韩语,等图片修补模型训练好了我就会训练新版的文字检测模型。
  5. 文本渲染区域是根据检测到的文本,而不是汽包决定的,这样可以处理没有汽包的图片但是不能很好进行英语嵌字,目前没有想到好的解决方案。
  6. Ryota et al.提出了获取配对漫画作为训练数据,训练可以结合图片内容进行翻译的模型,未来可以考虑把大量图片VQVAE化,输入nmt的encoder辅助翻译,而不是分框提取tag辅助翻译,这样可以处理范围更广的图片。这需要我们也获取大量配对翻译漫画/图片数据,以及训练VQVAE模型。
  7. 求闻转译志针对视频设计,未来这个项目要能优化到可以处理视频,提取文本颜色用于生成ass字幕,进一步辅助东方视频字幕组工作。甚至可以涂改视频内容,去掉视频内字幕。

效果图

原始图片 翻译后图片
Original Output
Original Output
Original Output
Original Output

Citation

@inproceedings{baek2019character,
  title={Character region awareness for text detection},
  author={Baek, Youngmin and Lee, Bado and Han, Dongyoon and Yun, Sangdoo and Lee, Hwalsuk},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={9365--9374},
  year={2019}
}
@article{hinami2020towards,
  title={Towards Fully Automated Manga Translation},
  author={Hinami, Ryota and Ishiwatari, Shonosuke and Yasuda, Kazuhiko and Matsui, Yusuke},
  journal={arXiv preprint arXiv:2012.14271},
  year={2020}
}
@article{oord2017neural,
  title={Neural discrete representation learning},
  author={Oord, Aaron van den and Vinyals, Oriol and Kavukcuoglu, Koray},
  journal={arXiv preprint arXiv:1711.00937},
  year={2017}
}
Comments
  • Translation of big images

    Translation of big images

    For images with height more then 4000px I'm getting error error-too-large But that really nessasary for web's. It has for example 720 × 6781 size. I see the restriction in the code. Why It was added? What is the real limit? Can it be changed for example to widthheight < 40004000?

    opened by purpleraven 20
  • Translation is failed when using docker

    Translation is failed when using docker

    I deployed with docker compose. And then i accessed web and then test with image. But I got this error message

    manga_image_translator_gpu  | New `submit` task d54abe601f1c164299865da1999e479cd043999676634b0fe47968e7e4f2f06b-M-google-KOR-default-auto
    manga_image_translator_gpu  |  -- Processing task d54abe601f1c164299865da1999e479cd043999676634b0fe47968e7e4f2f06b-M-google-KOR-default-auto
    manga_image_translator_gpu  |  -- Detection resolution 1536
    manga_image_translator_gpu  |  -- Detector using default
    manga_image_translator_gpu  |  -- Render text direction is auto
    manga_image_translator_gpu  |  -- Preparing translator
    manga_image_translator_gpu  |  -- Preparing upscaling
    manga_image_translator_gpu  |  -- Running upscaling
    manga_image_translator_gpu  | Task state d54abe601f1c164299865da1999e479cd043999676634b0fe47968e7e4f2f06b-M-google-KOR-default-auto to upscaling
    manga_image_translator_gpu  | /app/models/waifu2x-linux/waifu2x-ncnn-vulkan: error while loading shared libraries: libvulkan.so.1: cannot open shared object file: No such file or directory
    manga_image_translator_gpu  | Traceback (most recent call last):
    manga_image_translator_gpu  |   File "/app/translate_demo.py", line 283, in infer_safe
    manga_image_translator_gpu  |     return await infer(
    manga_image_translator_gpu  |   File "/app/translate_demo.py", line 147, in infer
    manga_image_translator_gpu  |     img_upscaled_pil = (await dispatch_upscaling('waifu2x', [image], ratio, args.use_cuda))[0]
    manga_image_translator_gpu  |   File "/app/upscaling/__init__.py", line 35, in dispatch
    manga_image_translator_gpu  |     return await upscaler.upscale(image_batch, upscale_ratio)
    manga_image_translator_gpu  |   File "/app/upscaling/common.py", line 17, in upscale
    manga_image_translator_gpu  |     return await self._upscale(image_batch, upscale_ratio)
    manga_image_translator_gpu  |   File "/app/upscaling/common.py", line 26, in _upscale
    manga_image_translator_gpu  |     return await self.forward(*args, **kwargs)
    manga_image_translator_gpu  |   File "/app/utils.py", line 338, in forward
    manga_image_translator_gpu  |     return await self._forward(*args, **kwargs)
    manga_image_translator_gpu  |   File "/app/upscaling/waifu2x.py", line 67, in _forward
    manga_image_translator_gpu  |     self._run_waifu2x_executable(in_dir, out_dir, upscale_ratio, 0)
    manga_image_translator_gpu  |   File "/app/upscaling/waifu2x.py", line 92, in _run_waifu2x_executable
    manga_image_translator_gpu  |     subprocess.check_call(cmds)
    manga_image_translator_gpu  |   File "/opt/conda/lib/python3.9/subprocess.py", line 373, in check_call
    manga_image_translator_gpu  |     raise CalledProcessError(retcode, cmd)
    manga_image_translator_gpu  | subprocess.CalledProcessError: Command '['/app/models/waifu2x-linux/waifu2x-ncnn-vulkan', '-i', '/tmp/tmp4ou8jfmp', '-o', '/tmp/tmpok5pw82w', '-m', '/app/models/waifu2x-linux/models-cunet', '-s', '4', '-n', '0']' returned non-zero exit status 127.
    manga_image_translator_gpu  | Task state d54abe601f1c164299865da1999e479cd043999676634b0fe47968e7e4f2f06b-M-google-KOR-default-auto to error
    

    What is wrong?

    opened by kkbpower 15
  • Upload Failed & Access is denies error

    Upload Failed & Access is denies error

    I cloned the repo and install all the required module, but I get upload failed error with web mode

    F:\Offline\Manga[MTL] Machine Translation tool\manga-image-translator-main>python translate_demo.py --mode web --use-inpainting --verbose --translator=google --target-lang=ENG Namespace(mode='web', image='', image_dst='', size=1536, use_inpainting=True, use_cuda=False, force_horizontal=False, inpainting_size=2048, unclip_ratio=2.3, box_threshold=0.7, text_threshold=0.5, text_mag_ratio=1, translator='google', target_lang='ENG', use_ctd=False, verbose=True) -- Loading models -- Running in web service mode -- Waiting for translation tasks fail to initialize deepl : auth_key must not be empty switch to google translator Serving up app on 127.0.0.1:5003

    image

    Also, when I try to run batch translation, I get access denied error like this F:\Offline\Manga[MTL] Machine Translation tool\manga-image-translator-main>python translate_demo.py --image <F:\Offline\Manga\Sousaku Kanojo\lime message> --use-inpainting --verbose --translator=google --target-lang=ENG Access is denied.

    Anyone know the solution or maybe somethings is wrong with my command?

    opened by bregassa 12
  • Error: (-215:Assertion failed) in function 'warpPerspective'

    Error: (-215:Assertion failed) in function 'warpPerspective'

    I am getting the error in the title on some image files. Here is an example.

    example

    I tried the online demo in case it was a problem local to my machine, and it also produced an error.

    bug 
    opened by crotron 11
  • Can I use wider area while text rendering process?

    Can I use wider area while text rendering process?

    Because it is awkward that reading text vertically, I modified text_render.py to always render text horizontally. But since original text area is too narrow, this result is still hard to read. So, I want to know it is possible to modify code to use more wider area while text rendering process.(and how to)

    Sorry for my poor English and thanks in advance.

    opened by ppkppk8520 10
  • Add Offline translation Support

    Add Offline translation Support

    What

    This PR adds support for an offline translation mode. (And also adds a local docker stack along side a few other QOL improvements) (Does aim to partially remedy issues found in #41)

    How

    This PR relies on the https://ai.facebook.com/research/no-language-left-behind/ model for it's reasonable performance in per sentence language translation and broad support for all currently mapped languages in the tool (In every mapped combination). It supports two modes :

    It should be noted that "NLLB-200 is a research model and is not released for production deployment." but in internal testing the translation quality seems acceptable enough to continue for using as a base for a basic offline translation model that can be used to fill any / all language variations.

    More specific models like the one used in Sugoi Translator, http://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/ or https://github.com/argosopentech/argos-translate may offer higher quality translation options but would require a more complex implementation / be significantly less broad in scope.

    This has been tested in both CPU (3950x) and GPU (RTX3080) modes and demonstrated reasonable performance in each. With the big model loaded GPU ram consumption does not exceed 10GB. (Hovering around 9.5)

    The model is automatically downloaded at runtime when "offline" is set for the translation model and then cached.

    Why

    So in theory this could be run standalone without any dependencies on external services. :thinking:

    opened by ryanolee 9
  • Add docker support

    Add docker support

    What

    This PR aims to add docker support to the manga image translator project. It also add's a few minor bug fixes / quality of life improvements to the CLI.

    More specifically:

    • Docker image for the CLI
    • Examples for how to use the CLI with docker
    • CICD pipeline for when docker is revised
    • Options to rebind the port of the web server
    • Options to change the host of the server (0.0.0.0) for docker
    • Options to log output from the running web server

    Why

    Currently the setup process requires a very specific application environment. Dockerising the tool should make it way way more portable for other people to use. (In theory running a single command to get a working environment setup)

    How

    By adding a build pipeline for docker along side documentation on it's use.

    How to test

    Se documentation changes in PR

    Caveats

    • Currently the docker file is hosted on my docker hub. If this does look like it could be good to merge might be worth you @zyddnys setting up a docker hub quickly and hooking up the release pipeline. (Should be done now)
    • The documentation will need updating to remove references to my name (Should be done now)
    • Unfortunately I do not speak mandarin so cannot update the CN readme.md :smiling_face_with_tear:
    • The docker container is fairly big (~5GB)
    • Upon new releases the docker file might need updating to point to new models by changing the RELEASE build arg

    In either case thanks for looking at this and great job with the tool! Any comment would be much appreciated :eyes:

    opened by ryanolee 9
  • error offline using windows 11

    error offline using windows 11

    hi, sorry for my bad english i use windows 11, python 310 when using offline mode, it error

    C:\Users\GIGABYTE>cd /d E:\manga-image-translator
    E:\manga-image-translator>python translate_demo.py --verbose --translator=offline --target-lang=ENG --image C:\Users\GIGABYTE\Desktop\eat\download\009\3.png
    Namespace(mode='demo', image='C:\\Users\\GIGABYTE\\Desktop\\eat\\download\\009\\3.png', image_dst='', target_lang='ENG', verbose=True, host='127.0.0.1', port=5003, log_web=False, ocr='48px_ctc', inpainter='lama_mpe', translator='offline', use_cuda=False, use_cuda_limited=False, detection_size=1536, inpainting_size=2048, unclip_ratio=2.3, box_threshold=0.7, text_threshold=0.5, text_mag_ratio=1, font_size_offset=0, force_horizontal=False, force_vertical=False, upscale_ratio=None, use_ctd=False, manga2eng=False, eng_font='fonts/comic shanns 2.ttf')
     -- Preload Checks
     -- Loading models
     -- Running in single image demo mode
     -- Detection resolution 1536
     -- Detector using default
     -- Render text direction is auto
     -- Preparing translator
     -- Preparing upscaling
     -- Running upscaling
    [0 NVIDIA GeForce GTX 1660 SUPER]  queueC=2[8]  queueG=0[16]  queueT=1[2]
    [0 NVIDIA GeForce GTX 1660 SUPER]  bugsbn1=0  bugbilz=51  bugcopc=0  bugihfa=0
    [0 NVIDIA GeForce GTX 1660 SUPER]  fp16-p/s/a=1/1/1  int8-p/s/a=1/1/1
    [0 NVIDIA GeForce GTX 1660 SUPER]  subgroup=32  basic=1  vote=1  ballot=1  shuffle=1
     -- Running text detection
    Detection resolution: 1280x1536
     -- Running OCR
    ------------------------------
    世: 0.9999960661089133
    子: 0.9999487426325072
    !: 0.9994326474291275
    ------------------------------
    そ: 0.9999395645427589
    ろ: 0.9999988079084972
    そ: 0.9999650728993075
    ろ: 0.9999986886995842
    ------------------------------
    私: 1.0
    も: 0.9999935627400018
    我: 0.9999998807907247
    慢: 1.0
    の: 0.9999998807907247
    限: 0.9999998807907247
    界: 0.9999996423722521
    だ: 0.9999955892755635
    ------------------------------
    国: 0.9996509578637115
    境: 0.9999815229018083
    の: 1.0
    な: 0.9998477929052435
    い: 0.9999911785905904
    楽: 0.9999907017622996
    し: 0.9998875982730323
    み: 0.9999920130413283
    ------------------------------
    絶: 1.0
    対: 0.9999957084838798
    に: 0.9999997615814777
    許: 0.9999974966112362
    さ: 0.9999606624830781
    れ: 0.9999986886995842
    な: 0.9999624504845601
    い: 0.9999949932351057
    ------------------------------
    今: 0.9999971389852362
    年: 1.0
    の: 1.0
    内: 0.9996265376028781
    に: 0.9999996423722521
    決: 0.9999963045256735
    断: 0.9999983310727032
    せ: 0.9999849798550975
    よ: 0.9999939203633587
    ------------------------------
    跡: 1.0
    継: 1.0
    ぎ: 0.9999963045256735
    を: 0.9999986886995842
    絶: 0.9999997615814777
    や: 0.999977350747961
    す: 0.9999538681349789
    な: 0.9985389629265963
    ど: 0.999985933501902
    0.9997924528221414 世子! fg: (1, 0, 1) bg: (0, 1, 1)
    0.9999755332023961 そろそろ fg: (0, 0, 1) bg: (0, 0, 0)
    0.9999985545922271 私も我慢の限界だ fg: (0, 0, 3) bg: (0, 0, 3)
    0.9999177141633738 国境のない楽しみ fg: (64, 42, 43) bg: (62, 40, 43)
    0.999988720072921 絶対に許されない fg: (0, 0, 0) bg: (0, 0, 0)
    0.999955199323479 今年の内に決断せよ fg: (0, 0, 0) bg: (0, 0, 0)
    0.999827770426052 跡継ぎを絶やすなど fg: (0, 0, 1) bg: (0, 0, 1)
     -- spliting {0, 4, 6}
    to split [0, 4, 6]
    edge_weights [185.02432272541898, 175.025712396779]
    std: 4.999305164319992, mean: 180.025017561099
     -- spliting {1, 2, 5}
    to split [1, 2, 5]
    edge_weights [180.01111076819674, 172.14238292762187]
    std: 3.9343639202874385, mean: 176.0767468479093
     -- spliting {3}
    to split [3]
    region_indices [{0, 4, 6}, {1, 2, 5}, {3}]
     -- Generating text mask
    100%|████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:00<00:00,  7.97it/s]
     -- Running inpainting
    Inpainting resolution: 1560x2048
     -- Translating
     -- Selected translator: SugoiTranslator
    2022-12-19 04:56:34 | INFO | fairseq.file_utils | loading archive file E:\manga-image-translator\models\translators\jparacrawl/
    2022-12-19 04:56:34 | INFO | fairseq.file_utils | loading archive file E:\manga-image-translator\models\translators\jparacrawl/
    Traceback (most recent call last):
      File "E:\manga-image-translator\translate_demo.py", line 394, in <module>
        loop.run_until_complete(main(args.mode))
      File "C:\Python\Python310\lib\asyncio\base_events.py", line 646, in run_until_complete
        return future.result()
      File "E:\manga-image-translator\translate_demo.py", line 323, in main
        await infer(Image.open(args.image), mode)
      File "E:\manga-image-translator\translate_demo.py", line 227, in infer
        translated_sentences = await dispatch_translation(translator, src_lang, tgt_lang, queries, use_cuda = args.use_cuda and not args.use_cuda_limited)
      File "E:\manga-image-translator\translators\__init__.py", line 91, in dispatch
        result = await asyncio.create_task(translator.translate(src_lang, tgt_lang, queries))
      File "E:\manga-image-translator\translators\selective.py", line 71, in translate
        await self._real_translator.load(*self._cached_load_params)
      File "E:\manga-image-translator\translators\common.py", line 62, in load
        return await super().load(device, *self.parse_language_codes(from_lang, to_lang))
      File "E:\manga-image-translator\utils.py", line 330, in load
        await self._load(*args, **kwargs, device=device)
      File "E:\manga-image-translator\translators\sugoi.py", line 61, in _load
        self.model = TransformerModel.from_pretrained(
      File "C:\Python\Python310\lib\site-packages\fairseq\models\fairseq_model.py", line 267, in from_pretrained
        x = hub_utils.from_pretrained(
      File "C:\Python\Python310\lib\site-packages\fairseq\hub_utils.py", line 73, in from_pretrained
        models, args, task = checkpoint_utils.load_model_ensemble_and_task(
      File "C:\Python\Python310\lib\site-packages\fairseq\checkpoint_utils.py", line 423, in load_model_ensemble_and_task
        raise IOError("Model file not found: {}".format(filename))
    OSError: Model file not found: E:\manga-image-translator\models\translators\jparacrawl/base.pretrain.ja-en.pt
    

    my prediction is this "/" in "/base.pretrain.ja-en.pt" because you write in linux OS, when i use windows OS that use "\", the error triggered

    bug 
    opened by kucingkembar 8
  • 自动切换翻译器问题

    自动切换翻译器问题

    大佬好,我在Windows段执行命令行翻译整个文件夹,发现其中有段问题: Inpainting resolution: 1360x1920 -- Translating oh no. fail to initialize deepl : auth_key must not be empty switch to google translator -- Rendering translated text 似乎识别我所选择的翻译器为deepl了,实际上我所执行的为 python translate_demo.py --verbose --mode batch --use-inpainting --use-cuda --translator=baidu --target-lang=CHS --image D:/translate/1234 很显然,我所选择的是百度翻译,但是却切换为了谷歌翻译器了,该如何解决这个问题呢,谢谢!

    opened by biandefeng0315 8
  • AttributeError: 'TextBlock' object has no attribute 'aabb'

    AttributeError: 'TextBlock' object has no attribute 'aabb'

    我尝试修改代码在处理照片的exe,但遇到了这个问题 File "C:/ipython/image/aaaaaaaaaaaa.py", line 284, in loop.run_until_complete(main()) File "C:\Users\19378.conda\envs\pytorch\lib\asyncio\base_events.py", line 616, in run_until_complete return future.result() File "C:/ipython/image/aaaaaaaaaaaa.py", line 278, in main await infer(img, mode, '', alpha_ch = alpha_ch) File "C:/ipython/image/aaaaaaaaaaaa.py", line 137, in infer await dispatch_ocr(img, text_regions, True, model_name="32px", verbose=True) File "C:\ipython\image\ocr_init_.py", line 276, in dispatch return run_ocr_32px(img, cuda, list(generate_text_direction(textlines)), batch_size, verbose=verbose) File "C:\ipython\image\ocr_init_.py", line 254, in generate_text_direction if quadrilateral_can_merge_region(ubox, vbox): File "C:\ipython\image\utils.py", line 1685, in quadrilateral_can_merge_region b1 = a.aabb File "C:\ipython\image\textblockdetector\textblock.py", line 185, in getattribute return object.getattribute(self, name) AttributeError: 'TextBlock' object has no attribute 'aabb' aabb是在Quadrilateral类中,但他会调用textblockdetector\textblock.py导致错误,应该如何解决呢

    opened by shkds 7
  • A simplistic and naive wordbreak implementation

    A simplistic and naive wordbreak implementation

    Note: I'm not a python developer, so might contain horrible code/not use obvious libs/methods

    I gave it a try to add some more logic to the world/line break logic, so it doesn't break off single letters/spaces and uses -. grafik becomes grafik

    This is still far from perfect, but an improvement. The issues I noticed:

    • it adds line breaks to places like I'd/don't, making it I-'d/don-'t
    • it adds linebreaks where the words would have more than enough space like in the bottom left example, pull could as well be in the same/next line, shifting everything down a bit.
    opened by tr7zw 7
  • cv2.error: OpenCV(4.7.0) D:\a\opencv-python\opencv-python\opencv\modules\imgproc\src\imgwarp.cpp:1724: error: (-215:Assertion failed) dst.cols < SHRT_MAX && dst.rows < SHRT_MAX && src.cols < SHRT_MAX && src.rows < SHRT_MAX in function 'cv::remap'

    cv2.error: OpenCV(4.7.0) D:\a\opencv-python\opencv-python\opencv\modules\imgproc\src\imgwarp.cpp:1724: error: (-215:Assertion failed) dst.cols < SHRT_MAX && dst.rows < SHRT_MAX && src.cols < SHRT_MAX && src.rows < SHRT_MAX in function 'cv::remap'

    cv2.error: OpenCV(4.7.0) D:\a\opencv-python\opencv-python\opencv\modules\imgproc\src\imgwarp.cpp:1724: error: (-215:Assertion failed) dst.cols < SHRT_MAX && dst.rows < SHRT_MAX && src.cols < SHRT_MAX && src.rows < SHRT_MAX in function 'cv::remap' 2023-01-08_13-40-26

    opened by My12123 0
  • Error logging in web mode

    Error logging in web mode

    Currently, in web mode during batch images processing very difficult to find logs for non processed images. Will be much easyly, with error log for the image in same folder with it.

    Now for every task working dirrectory created. Something like this

    result/89d8b9b34198b23753309232f60fc118feab2c9cde671bdcb6467f801c4f6589--deepl-RUS-default-auto/
    

    the logs for one image processing can be storred in the same folder in log.txt

    In that case I can create bug reports very fast =)

    enhancement 
    opened by purpleraven 0
  • Error arithm.cpp:647 during rendering with custom font

    Error arithm.cpp:647 during rendering with custom font

    192 83 113 74
    font_size: 47
    ['ХАХА,', 'КАКОЙ', 'ИНТЕРЕСН-', 'ЫЙ', 'ПЕРСОНАЖ.'] [157, 214, 361, 80, 362]
    HAH?
    ХАХ?
    520 1160 68 33
    font_size: 79
    ['ХАХ?'] [237]
    WHY DID-YOU SUDDENLY TURN INTO. A TOTAL DICK?
    ПОЧЕМУ ТЫ ВДРУГ ПРЕВРАТИЛСЯ В. В ПОЛНОГО ПРИДУРКА?
    608 1193 271 39
    font_size: 47
    ['ПОЧЕМУ ТЫ ВДРУГ ПРЕВРАТИЛ-', 'СЯ В. В ПОЛНОГО ПРИДУРКА?'] [944, 877]
    个腾讯动漫 ac.aa.caM
    个腾讯动漫 ac.aa.caM
    804 1238 110 36
    font_size: 47
    ['个腾讯动漫', 'ac.aa.caM'] [235, 332]
    HEY KID! YOUR ELDER'S ASKING YOU A QUESTION.
    ЭЙ, МАЛЫШ! ТВОЙ СТАРЕЙШИНА ЗАДАЕТ ТЕБЕ ВОПРОС.
    400 425 159 71
    font_size: 79
    ['ЭЙ, МАЛЫШ! ТВОЙ', 'СТАРЕЙШИНА', 'ЗАДАЕТ ТЕБЕ', 'ВОПРОС.'] [879, 659, 712, 462]
    Traceback (most recent call last):
      File "/app/translate_demo.py", line 282, in infer_safe
        return await infer(
      File "/app/translate_demo.py", line 263, in infer
        output = await dispatch_rendering(np.copy(img_inpainted), args.text_mag_ratio, translated_sentences, textlines, text_regions, render_text_direction_overwrite, args.target_lang, args.font_size_offset)
      File "/app/text_rendering/__init__.py", line 65, in dispatch
        img_canvas = render(img_canvas, font_size, text_mag_ratio, trans_text, region, majority_dir, fg, bg, False, font_size_offset)
      File "/app/text_rendering/__init__.py", line 119, in render
        temp_box = text_render.put_text_horizontal(
      File "/app/text_rendering/text_render.py", line 497, in put_text_horizontal
        offset_x = put_char_horizontal(font_size, rot, t, pen_line, canvas_text, canvas_border, border_size=bgsize)
      File "/app/text_rendering/text_render.py", line 471, in put_char_horizontal
        canvas_border[pen_border[1]:pen_border[1]+bitmap_b.rows, pen_border[0]:pen_border[0]+bitmap_b.width] = cv2.add(canvas_border[pen_border[1]:pen_border[1]+bitmap_b.rows, pen_border[0]:pen_border[0]+bitmap_b.width], bitmap_border)
    cv2.error: OpenCV(4.6.0) /io/opencv/modules/core/src/arithm.cpp:647: error: (-209:Sizes of input arguments do not match) The operation is neither 'array op array' (where arrays have the same size and the same number of channels), nor 'array op scalar', nor 'scalar op array' in function 'arithm_op'
    

    happance for that images translations. Any ideas? 0011 0006 0002

    bug 
    opened by purpleraven 5
Releases(beta-0.3)
An Implementation of the FOTS: Fast Oriented Text Spotting with a Unified Network

FOTS: Fast Oriented Text Spotting with a Unified Network Introduction This is a pytorch re-implementation of FOTS: Fast Oriented Text Spotting with a

GeorgeJoe 171 Aug 04, 2022
Write-ups for the SwissHackingChallenge2021 CTF.

SwissHackingChallenge 2021 : Write-ups This repository contains a collection of my write-ups for challenges solved during the SwissHackingChallenge (S

Julien Béguin 3 Jun 07, 2021
Python-based tools for document analysis and OCR

ocropy OCRopus is a collection of document analysis programs, not a turn-key OCR system. In order to apply it to your documents, you may need to do so

OCRopus 3.2k Dec 31, 2022
Détection de créneaux de vaccination disponibles pour l'outil ViteMaDose

Vite Ma Dose ! est un outil open source de CovidTracker permettant de détecter les rendez-vous disponibles dans votre département afin de vous faire v

CovidTracker 239 Dec 13, 2022
CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering" official PyTorch implementation.

LED2-Net This is PyTorch implementation of our CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering". Y

Fu-En Wang 83 Jan 04, 2023
A version of nrsc5-gui that merges the interface developed by cmnybo with the architecture developed by zefie in order to start a new baseline that is not heavily dependent upon Python processing.

NRSC5-DUI is a graphical interface for nrsc5. It makes it easy to play your favorite FM HD radio stations using an RTL-SDR dongle. It will also displa

61 Dec 22, 2022
Tesseract Open Source OCR Engine (main repository)

Tesseract OCR About This package contains an OCR engine - libtesseract and a command line program - tesseract. Tesseract 4 adds a new neural net (LSTM

48.4k Jan 09, 2023
This Repository contain Opencv Projects in python

Python-Opencv OpenCV OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library. OpenCV was

Yash Sakre 2 Nov 06, 2021
Basic functions manipulating images using the OpenCV library

OpenCV Basic functions manipulating images using the OpenCV library. Reading Ima

Shatha Siala 3 Feb 17, 2022
This repo contains several opencv projects done while learning opencv in python.

opencv-projects-python This repo contains both several opencv projects done while learning opencv by python and opencv learning resources [Basic conce

Fatin Shadab 2 Nov 03, 2022
Use Youdao OCR API to covert your clipboard image to text.

Alfred Clipboard OCR 注:本仓库基于 oott123/alfred-clipboard-ocr 的逻辑用 Python 重写,换用了有道 AI 的 API,准确率更高,有效防止百度导致隐私泄露等问题,并且有道 AI 初始提供的 50 元体验金对于其资费而言个人用户基本可以永久使用

Junlin Liu 6 Sep 19, 2022
Rubik's Cube in pygame with OpenGL

Rubik Rubik's Cube in pygame with OpenGL The script show on the screen a Rubik Cube buit with OpenGL. Then I have also implemented all the possible mo

Gabro 2 Apr 15, 2022
The official code for the ICCV-2021 paper "Speech Drives Templates: Co-Speech Gesture Synthesis with Learned Templates".

SpeechDrivesTemplates The official repo for the ICCV-2021 paper "Speech Drives Templates: Co-Speech Gesture Synthesis with Learned Templates". [arxiv

Qian Shenhan 53 Dec 23, 2022
Camelot: PDF Table Extraction for Humans

Camelot: PDF Table Extraction for Humans Camelot is a Python library that makes it easy for anyone to extract tables from PDF files! Note: You can als

Atlan Technologies Pvt Ltd 3.3k Dec 31, 2022
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
Extracting Tables from Document Images using a Multi-stage Pipeline for Table Detection and Table Structure Recognition:

Multi-Type-TD-TSR Check it out on Source Code of our Paper: Multi-Type-TD-TSR Extracting Tables from Document Images using a Multi-stage Pipeline for

Pascal Fischer 178 Dec 27, 2022
OpenCVを用いたカメラキャリブレーションのサンプルです。2021/06/21時点でPython実装のある3種類(通常カメラ向け、魚眼レンズ向け(fisheyeモジュール)、全方位カメラ向け(omnidirモジュール))について用意しています。

OpenCV-CameraCalibration-Example FishEyeCameraCalibration.mp4 OpenCVを用いたカメラキャリブレーションのサンプルです 2021/06/21時点でPython実装のある以下3種類について用意しています。 通常カメラ向け 魚眼レンズ向け(

KazuhitoTakahashi 34 Nov 17, 2022
Ocular is a state-of-the-art historical OCR system.

Ocular Ocular is a state-of-the-art historical OCR system. Its primary features are: Unsupervised learning of unknown fonts: requires only document im

228 Dec 30, 2022
Let's explore how we can extract text from forms

Form Segmentation Let's explore how we can extract text from any forms / scanned pages. Objectives The goal is to find an algorithm that can extract t

Philip Doxakis 42 Jun 05, 2022
Run tesseract with the tesserocr bindings with @OCR-D's interfaces

ocrd_tesserocr Crop, deskew, segment into regions / tables / lines / words, or recognize with tesserocr Introduction This package offers OCR-D complia

OCR-D 38 Oct 14, 2022